273 research outputs found

    Numbers of spermatozoa in queens and drones indicate multiple mating of queens in Apis andreniformis and Apis dorsata.

    Get PDF
    Drones of Apis dorsata had an average of 2.46·106 spermatozoa in their vesiculae seminales. Two queens had 3.67·106 spermatozoa in their spermathecae. In A adreniformis, drones had an average of 0.13·106 and the spermathecae of 2 queens contained 0.98 and 1.09·106 spermatozoa. In both A dorsata and A andreniformis the spermathecae of queens contained more spermatozoa than the vesiculae seminales of a single drone of either species. Therefore, we conclude that multiple mating occurs in both species as is the case for A mellifera, A cerana and A florea

    Coupled Hydromechanical Modelling of a Vertical Hydraulic Sealing System Based on the Sandwich Principle

    Get PDF
    For the shaft sealing of a repository for radioactive waste, a Sandwich sealing system was developed by KIT-CMM consisting of bentonite-based sealing segments (DS) and sand mixture-based equipotential segments (ES). To demonstrate the functionality of the Sandwich sealing system, various laboratory tests (MiniSandwich tests and semi-technical scale experiments) have been carried out before a large-scale experiment has been implemented in situ at the Mont Terri Rock Laboratory (CH). An important coupled process in the Sandwich system is the swelling deformation of the DS while aqueous fluid penetrates into the system. Consequently, the interparticle porosity (effective porosity) of the DS decreases by swelling strain, resulting in a reduction in the permeability of the DS. Pore space of the ES also decreases slightly due to swelling stress in the adjacent DS, which also leads to a reduction in the permeability of the ES. To understand the coupled hydromechanical processes of the Sandwich sealing system, a numerical model was developed to interpret the experimental observations from the MiniSandwich tests and to parameterize different components. A linear swelling model for DS and empirical functions for the swelling deformation-induced permeability change for both DS and ES segments were introduced into the coupled model with Richards’ flow and elastic model. Sensitivity analysis with parameter variations of the most important parameters reduces the uncertainty in the system behavior

    The current state of hospital-based emergency medicine in Germany

    Get PDF
    Germany has a long tradition of having physicians, often anesthesiologists with additional training in emergency medicine, deliver prehospital emergency care. Hospital-based emergency medicine in Germany also differs significantly from the Anglo-American model, and until recently having separate emergency rooms for different departments was the norm. In the past decade, many hospitals have created “centralized emergency departments” [Zentrale Notaufnahme (ZNAs)]. There is ongoing debate about the training and certification of physicians working in the ZNAs and whether Germany will adopt a specialty board certification for emergency medicine

    Drone aggregation behavior in the social wasp Vespula germanica (Hymenoptera: Vespidae): Effect of kinship and density

    Get PDF
    Inbreeding can have negative consequences on population viability because of the reduced fitness of the progeny. In general, most species have developed mechanisms to minimize inbreeding such as dispersal and kin avoidance behavior. In the eusocial Hymenoptera, related individuals typically share a common nest and have relatively short mating periods, this could lead to inbreeding, and because of their single?locus complementary sex determination system, it may generate diploid males that could result in infertile triploid progeny representing a cost for the colony. Vespula germanica, is an eusocial wasp that has invaded many parts of the world, despite likely facing a reduced genetic pool during the arrival phases. We ask whether male wasp display specific aggregation behavior that favors genetic diversity, key to reduce inbreeding. Through a set of laboratory experiments, we investigated the effects of drone nestmateship and density on the aggregation behavior of V. germanica drones. We show that drones avoid aggregating with their nestmates at all densities while non-nestmates are avoided only at high densities. This suggests that lek genetic diversity and density could be regulated through drone behavior and in the long run minimize inbreeding favoring invasion success.Fil: Masciocchi, Maité. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Angeletti, Bårbara. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Corley, Juan Carlos. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; ArgentinaFil: Martinez Von Ellrichshausen, Andres Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentin

    How to Join a Wave: Decision-Making Processes in Shimmering Behavior of Giant Honeybees (Apis dorsata)

    Get PDF
    Shimmering is a collective defence behaviour in Giant honeybees (Apis dorsata) whereby individual bees flip their abdomen upwards, producing Mexican wave-like patterns on the nest surface. Bucket bridging has been used to explain the spread of information in a chain of members including three testable concepts: first, linearity assumes that individual “agent bees” that participate in the wave will be affected preferentially from the side of wave origin. The directed-trigger hypothesis addresses the coincidence of the individual property of trigger direction with the collective property of wave direction. Second, continuity describes the transfer of information without being stopped, delayed or re-routed. The active-neighbours hypothesis assumes coincidence between the direction of the majority of shimmering-active neighbours and the trigger direction of the agents. Third, the graduality hypothesis refers to the interaction between an agent and her active neighbours, assuming a proportional relationship in the strength of abdomen flipping of the agent and her previously active neighbours. Shimmering waves provoked by dummy wasps were recorded with high-resolution video cameras. Individual bees were identified by 3D-image analysis, and their strength of abdominal flipping was assessed by pixel-based luminance changes in sequential frames. For each agent, the directedness of wave propagation was based on wave direction, trigger direction, and the direction of the majority of shimmering-active neighbours. The data supported the bucket bridging hypothesis, but only for a small proportion of agents: linearity was confirmed for 2.5%, continuity for 11.3% and graduality for 0.4% of surface bees (but in 2.6% of those agents with high wave-strength levels). The complimentary part of 90% of surface bees did not conform to bucket bridging. This fuzziness is discussed in terms of self-organisation and evolutionary adaptedness in Giant honeybee colonies to respond to rapidly changing threats such as predatory wasps scanning in front of the nest
    • 

    corecore