708 research outputs found

    Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry

    Get PDF
    We use narrow-band laser excitation of Yb atoms to substantially enhance the brightness of a cold beam of YbOH, a polyatomic molecule with high sensitivity to physics beyond the standard model (BSM). By exciting atomic Yb to the metastable ³P₁ state in a cryogenic environment, we significantly increase the chemical reaction cross-section for collisions of Yb with reactants. We characterize the dependence of the enhancement on the properties of the laser light, and study the final state distribution of the YbOH products. The resulting bright, cold YbOH beam can be used to increase the statistical sensitivity in searches for new physics utilizing YbOH, such as electron electric dipole moment and nuclear magnetic quadrupole moment experiments. We also perform new quantum chemical calculations that confirm the enhanced reactivity observed in our experiment and compare reaction pathways of Yb(³P) with the reactants H₂O and H₂O₂. More generally, our work presents a broad approach for improving experiments that use cryogenic molecular beams for laser cooling and precision measurement searches of BSM physics

    Signatures of Dark Matter Scattering Inelastically Off Nuclei

    Full text link
    Direct dark matter detection focuses on elastic scattering of dark matter particles off nuclei. In this study, we explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt de-excitation. We calculate the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents. For these cases, we find that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 MeV. We calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow to determine the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One figure added; supplemental material (fits to the structure functions) added as an Appendi

    Calculation of tunnel-couplings in open gate-defined disordered quantum dot systems

    Full text link
    Quantum computation based on semiconductor electron-spin qubits requires high control of tunnel-couplings, both across quantum dots and between the quantum dot and the reservoir. The tunnel-coupling to the reservoir sets the qubit detection and initialization bandwidth for energy-resolved spin-to-charge conversion and is essential to tune single-electron transistors commonly used as charge detectors. Potential disorder and the increasing complexity of the two-dimensional gate-defined quantum computing devices sets high demands on the gate design and the voltage tuning of the tunnel barriers. We present a Green's formalism approach for the calculation of tunnel-couplings between a quantum dot and a reservoir. Our method takes into account in full detail the two-dimensional electrostatic potential of the quantum dot, the tunnel barrier and reservoir. A Markov approximation is only employed far away from the tunnel barrier region where the density of states is sufficiently large. We calculate the tunnel-coupling including potential disorder effects, which become increasingly important for large-scale silicon-based spin-qubit devices. Studying the tunnel-couplings of a single-electron transistor in Si/SiGe as a showcase, we find that charged defects are the dominant source of disorder leading to variations in the tunnel-coupling of four orders of magnitude.Comment: 10 pages, 4 figure

    Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry

    Get PDF
    We use narrow-band laser excitation of Yb atoms to substantially enhance the brightness of a cold beam of YbOH, a polyatomic molecule with high sensitivity to physics beyond the standard model (BSM). By exciting atomic Yb to the metastable ³P₁ state in a cryogenic environment, we significantly increase the chemical reaction cross-section for collisions of Yb with reactants. We characterize the dependence of the enhancement on the properties of the laser light, and study the final state distribution of the YbOH products. The resulting bright, cold YbOH beam can be used to increase the statistical sensitivity in searches for new physics utilizing YbOH, such as electron electric dipole moment and nuclear magnetic quadrupole moment experiments. We also perform new quantum chemical calculations that confirm the enhanced reactivity observed in our experiment and compare reaction pathways of Yb(³P) with the reactants H₂O and H₂O₂. More generally, our work presents a broad approach for improving experiments that use cryogenic molecular beams for laser cooling and precision measurement searches of BSM physics

    Laboratory Headphone Studies of Human Response to Low-Amplitude Sonic Booms and Rattle Heard Indoors

    Get PDF
    Human response to sonic booms heard indoors is affected by the generation of contact-induced rattle noise. The annoyance caused by sonic boom-induced rattle noise was studied in a series of psychoacoustics tests. Stimuli were divided into three categories and presented in three different studies: isolated rattles at the same calculated Perceived Level (PL), sonic booms combined with rattles with the mixed sound at a single PL, and sonic booms combined with rattles with the mixed sound at three different PL. Subjects listened to sounds over headphones and were asked to report their annoyance. Annoyance to different rattles was shown to vary significantly according to rattle object size. In addition, the combination of low-amplitude sonic booms and rattles can be more annoying than the sonic boom alone. Correlations and regression analyses for the combined sonic boom and rattle sounds identified the Moore and Glasberg Stationary Loudness (MGSL) metric as a primary predictor of annoyance for the tested sounds. Multiple linear regression models were developed to describe annoyance to the tested sounds, and simplifications for applicability to a wider range of sounds are presented

    OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    Get PDF
    The rate constants required to model the OH+^+ observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H2(v=0,J=0,1)_2(v=0,J=0,1)+ O+^+(4S^4S) \rightarrow H + OH+(X3Σ,v,N)^+(X ^3\Sigma^-, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to asses the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.010.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH+^+ have been obtained for all astronomically significant ro-vibrational bands involving the X3ΣX^3\Sigma^- and/or A3ΠA^3\Pi electronic states. For this purpose the potential energy curves and electric dipole transition moments for seven electronic states of OH+^+ are calculated with {\it ab initio} methods at the highest level and including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH+(X3Σ)^+(X ^3\Sigma^-) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH+^+. In the models considered the excitation resulting from the chemical formation of OH+^+ increases the line fluxes by about 10 % or less depending on the density of the gas

    Acoustic Calibration of the Exterior Effects Room at the NASA Langley Research Center

    Get PDF
    The Exterior Effects Room (EER) at the NASA Langley Research Center is a 39-seat auditorium built for psychoacoustic studies of aircraft community noise. The original reproduction system employed monaural playback and hence lacked sound localization capability. In an effort to more closely recreate field test conditions, a significant upgrade was undertaken to allow simulation of a three-dimensional audio and visual environment. The 3D audio system consists of 27 mid and high frequency satellite speakers and 4 subwoofers, driven by a real-time audio server running an implementation of Vector Base Amplitude Panning. The audio server is part of a larger simulation system, which controls the audio and visual presentation of recorded and synthesized aircraft flyovers. The focus of this work is on the calibration of the 3D audio system, including gains used in the amplitude panning algorithm, speaker equalization, and absolute gain control. Because the speakers are installed in an irregularly shaped room, the speaker equalization includes time delay and gain compensation due to different mounting distances from the focal point, filtering for color compensation due to different installations (half space, corner, baffled/unbaffled), and cross-over filtering
    corecore