353 research outputs found
An initial intercomparison of atmospheric and oceanic climatology for the ICE-5G and ICE-4G models of LGM paleotopography
This paper investigates the impact of the new ICE-5G paleotopography dataset for Last Glacial Maximum (LGM) conditions on a coupled model simulation of the thermal and dynamical state of the glacial atmosphere and on both land surface and sea surface conditions. The study is based upon coupled climate simulations performed with the ocean–atmosphere–sea ice model of intermediate-complexity Climate de Bilt-coupled large-scale ice–ocean (ECBilt-Clio) model. Four simulations focusing on the Last Glacial Maximum [21 000 calendar years before present (BP)] have been analyzed: a first simulation (LGM-4G) that employed the original ICE-4G ice sheet topography and albedo, and a second simulation (LGM-5G) that employed the newly constructed ice sheet topography, denoted ICE-5G, and its respective albedo. Intercomparison of the results obtained in these experiments demonstrates that the LGM-5G simulation delivers significantly enhanced cooling over Canada compared to the LGM-4G simulation whereas positive temperature anomalies are simulated over southern North America and the northern Atlantic. Moreover, introduction of the ICE-5G topography is shown to lead to a deceleration of the subtropical westerlies and to the development of an intensified ridge over North America, which has a profound effect upon the hydrological cycle. Additionally, two flat ice sheet experiments were carried out to investigate the impact of the ice sheet albedo on global climate. By comparing these experiments with the full LGM simulations, it becomes evident that the climate anomalies between LGM-5G and LGM-4G are mainly driven by changes of the earth’s topography
Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs
Open Access at publisher's web site: http://www.springerlink.com/content/b682734237171631
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
Why the South Pacific Convergence Zone is diagonal
During austral summer, the majority of precipitation over the Pacific Ocean is concentrated in the South Pacific Convergence Zone (SPCZ). The surface boundary conditions required to support the diagonally (northwest-southeast) oriented SPCZ are determined through a series of experiments with an atmospheric general circulation model. Continental configuration and orography do not have a significant influence on SPCZ orientation and strength. The key necessary boundary condition is the zonally asymmetric component of the sea surface temperature (SST) distribution. This leads to a strong subtropical anticyclone over the southeast Pacific that, on its western flank, transports warm moist air from the equator into the SPCZ region. This moisture then intensifies (diagonal) bands of convection that are initiated by regions of ascent and reduced static stability ahead of the cyclonic vorticity in Rossby waves that are refracted toward the westerly duct over the equatorial Pacific. The climatological SPCZ is comprised of the superposition of these diagonal bands of convection. When the zonally asymmetric SST component is reduced or removed, the subtropical anticyclone and its associated moisture source is weakened. Despite the presence of Rossby waves, significant moist convection is no longer triggered; the SPCZ disappears. The diagonal SPCZ is robust to large changes (up to +/-6 degC) in absolute SST (i.e. where the SST asymmetry is preserved). Extreme cooling (change less than -6 degC) results in a weaker and more zonal SPCZ, due to decreasing atmospheric temperature, moisture content and convective available potential energy
Recommended from our members
The resolution sensitivity of the Asian summer monsoon and its inter-model comparison between MRI-AGCM and MetUM
In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5–20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity
Analysis of rainfall seasonality from observations and climate models
Two new indicators of rainfall seasonality based on information entropy, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere--ocean general circulation models. The RE provides a measure of the number of wet months and, for precipitation regimes featuring a distinct wet and dry season, it is directly related to the duration of the wet season. The DSI combines the rainfall intensity with its degree of seasonality and it is an indicator of the extent of the global monsoon region. We show that the RE and the DSI are fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercomparison and ranking. Regions with different precipitation regimes are classified and characterized in terms of RE and DSI. Comparison of different land observational datasets reveals substantial difference in their local representation of seasonality. It is shown that two-dimensional maps of RE provide an easy way to compare rainfall seasonality from various datasets and to determine areas of interest. Models participating to the Coupled Model Intercomparison Project platform, Phase 5, consistently overestimate the RE over tropical Latin America and underestimate it in West Africa, western Mexico and East Asia. It is demonstrated that positive RE biases in a general circulation model are associated with excessively peaked monthly precipitation fractions, too large during the wet months and too small in the months preceding and following the wet season; negative biases are instead due, in most cases, to an excess of rainfall during the premonsoonal months
Recommended from our members
Respective impacts of Arctic sea ice decline and increasing greenhouse gases concentration on Sahel precipitation
The impact of climate change on Sahel precipitation is uncertain and has to be widely documented. Recently, it has been shown that Arctic sea ice loss leverages the global warming effects worldwide, suggesting a potential impact of Arctic sea ice decline on tropical regions. However, defining the specific roles of increasing greenhouse gases (GHG) concentration and declining Arctic sea ice extent on Sahel climate is not straightforward since the former impacts the latter. We avoid this dependency by analysing idealized experiments performed with the CNRM-CM5 coupled model. Results show that the increase in GHG concentration explains most of the Sahel precipitation change. We found that the impact due to Arctic sea ice loss depends on the level of atmospheric GHG concentration. When the GHG concentration is relatively low (values representative of 1980s), then the impact is moderate over the Sahel. However, when the concentration in GHG is levelled up, then Arctic sea ice loss leads to increased Sahel precipitation. In this particular case the ocean-land meridional gradient of temperature strengthens, allowing a more intense monsoon circulation. We linked the non-linearity of Arctic sea ice decline impact with differences in temperature and sea level pressure changes over the North Atlantic Ocean. We argue that the impact of the Arctic sea ice loss will become more relevant with time, in the context of climate change
Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario
In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions---southern Europe, northern Africa and southern Australia---and areas of South and Central America, implying an increase in the number of dry days up to 1Â month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than 90% of the models project a delay of the rainfall centroid from a few days up to 2Â weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes
Congenital anterolateral tibial bowing and polydactyly: a case report
Congenital anterolateral bowing of the tibia is a rare deformity that may lead to pseudarthrosis and risk of fracture. This is commonly associated with neurofibromatosis type 1. In this report, we describe a 15-month old male with congenital anterolateral bowing of the right tibia and associated hallux duplication. This is a distinct entity with a generally favourable prognosis that should not be confused with other conditions such as neurofibromatosis type 1. Previously published cases are reviewed
- …
