224 research outputs found

    Constraints on the timing of crustal imbrication in the central Trans-Hudson Orogen from single zircon 207Pb/206Pb ages of granitoid rocks from the Pelican thrust zone, Saskatchewan

    Get PDF
    The Pelican thrust is a major ductile high-strain zone in the Reindeer Zone, Trans-Hudson Orogen, northern Saskatchewan. It is interpreted as the main sole thrust separating stacked juvenile Paleoproterozoic allochthons and underlying Archean microcontinental crust in this central part of the orogen. Exposed nonmylonitic rocks in the footwall of the thrust consist of the Sahli monzocharnockite and the smaller, more highly retrograded MacMillan Point granite. Protomylonitic to ultramylonitic gneisses in the thrust zone derive from a variety of prethrust protoliths. A footwall "internal suite" mainly comprises quartzofeldspathic orthogneisses ("Q" gneisses) and high-grade migmatitic paragneisses. Hanging-wall "external suite" mylonitic gneisses include feldspar-porphyroclastic hornblendic grey gneisses probably derived from arc plutons, and laminated amphibolites derived from volcanic rocks. The overlying allochthon mainly comprises protoliths equivalent to those of the porphyroclastic orthogneisses and laminated amphibolites, together with interfolded and overlying Paleoproterozoic paragneisses of the Kisseynew domain. The Sahli monzocharnockite yields 207Pb/206Pb zircon and whole-rock Rb-Sr ages of ca. 2500 Ma, and the "Q" gneisses give 207Pb/206Pb zircon ages of up to ca. 2900 Ma, implying that most of the internal suite (footwall) mylonite protoliths are Archean. In contrast, external suite (hanging wall) porphyroclastic orthogneisses yield ca. 1880-1840 Ma 207Pb/206Pb zircon ages. Main, peak-metamorphic displacement on the Pelican thrust is interpreted to have occurred mainly between 1840 and 1820 Ma, as indicated by 207Pb/206Pb zircon ages from small, highly deformed synthrusting granite-pegmatite neosomal bodies in the thrust zone. Undeformed postcollisional granites and pegmatites were emplaced ∼1789 Ma. Total duration from arc development to completion of arc-continent collision was ∼100 Ma. The Pelican thrust zone may be similar in significance and style to younger, major, ocean closure related thrusts such as the Frontal Pennine thrust of the western Alps and the Main Mantle, Main Boundary, and Main Central thrusts of the Himalayas. As for the Pelican thrust, these displace oceanic rocks over older basement.published_or_final_versio

    Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    Full text link
    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system

    Development and Microstructural Improvement of Spin Cast High-Speed Steel Rolls

    Get PDF
    A detailed microstructural analysis was conducted on a series of radial shell samples extracted from commercially produced centrifugally spin casted high-speed steel (HSS) work rolls for finishing hot strip mills (HSM). The systematic microstructural analysis was coupled with a numerical and experimental investigation to improve the life of HSS rolls. An integrated computational-experimental approach was developed to optimize the response of the HSS roll material that permitted the enhancement of the microstructure and properties of the HSS roll shell layer. Local continuous microstructural transformations through the thickness of the shell: carbide formation, precipitation, dissolution sequence and phase changes, were studied in great details. The analyses were conducted with the aid of advanced metallographic and experimental methods, finite-element (FE) analysis, and using commercial software systems to conduct thermodynamic-kinetics predictions. In order to analyze a response of the HSS roll to the hardening heat treatment (HT) and to control stress-strain evolution, a 3-D FE model was developed of the composite structure of the roll. The multilayered model considers nonlinear material properties of each individual layer as a function of temperature, based on measured chemical composition gradients through the HSS shell. Transient coupled thermal-stress analysis was performed, using actual measured surface temperatures as boundary conditions (BC) for the FE model. The allowable thermal stress-strain levels were established and compared with a) thermodynamically predicted high temperature mechanical properties and b) room temperature test results of the shear strengths for the shell, bonding and core. In addition, sub-structuring and image-based processing techniques were implemented to aid in the development of a meso-scale FE model to simulate the local response of a given microstructural constituents and matrix under particular thermal conditions. The fundamental interpretation of multilayered structure and multi-scale approach help to understand the kinetics phenomena associated with continuous local microstructural transformations due to nonlinear heat transfer. The results from the microstructural observations were in good agreement with the numerical predictions. The major impact of this work clearly indicated that a refined as-cast structure prior to the heat treatment promoted an increased precipitation of carbides during final hardening, which greatly improved strength and performance. A non-conventional HT was defined and implemented in order to provide an additional degree of microstructural pre-conditioning, which homogenized the matrix throughout the HSS shell. The new HT defined the austenitization temperatures and times to modify the morphology of brittle interdendritic eutectic carbide networks and, hence, facilitating the kinetics of dissolution of these carbides. This behavior caused an increase in the solute content of the matrix. As a result, the matrix hardness and strength were increased during subsequent hardening HT in comparison to the conventional HT routes used for as-cast HSS rolls. Reports about rolls with the new material that have been placed in service indicate that the rolls last 50-70% longer

    Reaction mechanism for the replacement of calcite by dolomite and siderite: Implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation

    Get PDF
    Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction textures at hydrothermal conditions. In doing so, we describe the mechanisms by which carbonate phases replace one another, and the implications for the evolution of geochemistry, rock microstructures and porosity. The sample from the 1.95 Moz Junction gold deposit, Western Australia, contains calcite derived from carbonation of a metamorphic amphibole—plagioclase assemblage that has further altered to siderite and dolomite. The calcite is porous and contains iron-rich calcite blebs interpreted to have resulted from fluid-mediated replacement of compositionally heterogeneous amphiboles. The siderite is polycrystalline but nucleates topotactically on the calcite. As a result, the boundaries between adjacent grains are low-angle boundaries (<10°), which are geometrically similar to those formed by crystal–plastic deformation and recovery. Growth zoning within individual siderite grains shows that the low-angle boundaries are growth features and not due to deformation. Low-angle boundaries develop due to the propagation of defects at grain faces and zone boundaries and by impingement of grains that nucleated with small misorientations relative to each other during grain growth.The cores of siderite grains are aligned with the twin planes in the parent calcite crystal showing that the reactant Fe entered the crystal along the twin boundaries. Dolomite grains, many of which appear to in-fill space generated by the siderite replacement, also show alignment of cores along the calcite twin planes, suggesting that they did not grow into space but replaced the calcite. Where dolomite is seen directly replacing calcite, it nucleates on the Fe-rich calcite due to the increased compatibility of the Fe-bearing calcite lattice relative to the pure calcite. Both reactions are interpreted as fluid-mediated replacement reactions which use the crystallography and elemental chemistry of the calcite. Experiments of fluid-mediated replacement reactions show that they proceed much faster than diffusion-based reactions. This is important when considering the rates of reactions relative to fluid flow in mineralising systems

    Age and geochemistry of the Charlestown Group, Ireland:Implications for the Grampian orogeny, its mineral potential and the Ordovician timescale

    Get PDF
    Accurately reconstructing the growth of continental margins during episodes of ocean closure has important implications for understanding the formation, preservation and location of mineral deposits in ancient orogens. The Charlestown Group of county Mayo, Ireland, forms an important yet understudied link in the Caledonian-Appalachian orogenic belt located between the well documented sectors of western Ireland and Northern Ireland. We have reassessed its role in the Ordovician Grampian orogeny, based on new fieldwork, high-resolution airborne geophysics, graptolite biostratigraphy, U–Pb zircon dating, whole rock geochemistry, and an examination of historic drillcore from across the volcanic inlier. The Charlestown Group can be divided into three formations: Horan, Carracastle, and Tawnyinah. The Horan Formation comprises a mixed sequence of tholeiitic to calc-alkaline basalt, crystal tuff and sedimentary rocks (e.g. black shale, chert), forming within an evolving peri-Laurentian affinity island arc. The presence of graptolites Pseudisograptus of the manubriatus group and the discovery of Exigraptus uniformis and Skiagraptus gnomonicus favour a latest Dapingian (i.e. Yapeenian Ya 2/late Arenig) age for the Horan Formation (equivalent to c. 471.2–470.5 Ma according to the timescale of Sadler et al., 2009). Together with three new U–Pb zircon ages of 471.95–470.82 Ma from enclosing felsic tuffs and volcanic breccias, this fauna provides an important new constraint for calibrating the Middle Ordovician timescale. Overlying deposits of the Carracastle and Tawnyinah formations are dominated by LILE- and LREE-enriched calc-alkaline andesitic tuffs and flows, coarse volcanic breccias and quartz-feldspar porphyritic intrusive rocks, overlain by more silicic tuffs and volcanic breccias with rare occurrences of sedimentary rocks. The relatively young age for the Charlestown Group in the Grampian orogeny, coupled with high Th/Yb and zircon inheritance (c. 2.7 Ga) in intrusive rocks indicate that the arc was founded upon continental crust (either composite Laurentian margin or microcontinental block). Regional correlation is best fitted to an association with the post-subduction flip volcanic/intrusive rocks of the Irish Caledonides, specifically the late-stage development of the Tyrone Igneous Complex, intrusive rocks of Connemara (western Ireland) and the Slishwood Division (Co. Sligo). Examination of breccia textures and mineralization across the volcanic inlier questions the previous porphyry hypothesis for the genesis of the Charlestown Cu deposit, which are more consistent with a volcanogenic massive sulfide (VMS) deposit.</p

    Flow Mechanisms in Rocks: Microscopic and mesoscopic structures, and their relation to physical conditions of deformation in the crust

    No full text
    Deformation of the crust is believed to occur dominantly by cataclasis at low temperatures and/or effective confining pressure, by pressure solution at intermediate temperatures, and by dislocation creep at high temperatures. Each flow mechanism gives rise to distinctive microscopic and small scale structures. Brittle deformation with grain fracture leading to a reduction of particle diameter is characteristic of cataclastic flow. Pressure solution produces grain shape fabrics by intercrystalline diffusion assisted by the presence of water. Grains may change shape at constant mass, or decrease in mass (and therefore in size) by long range diffusion: mass is then not locally conserved. Reduction of grain diameter leads to increased rates of deformation (strain softening). Distinctive spaced cleavage zones form by pressure solution in which mineral species are redistributed due to different rates of deformation: the displacement field is discontinuous and deformation non-isochemical. Tectonic veins associated with pressure solution structures probably form by local mass transport; thus brittle and ductile mechanical behaviour coexist. Dislocation creep produces grain shape fabrics by intracrystalline deformation. and may cause grain size reduction by subgrain formation and recrystallization. Preferred crystallogra-phic orientations can arise from dislocation glide. Mass is conserved and deformation is believed to be essentially isochemical. Small scale structures formed by dislocation creep are ductile, with a continuous displacement field
    • …
    corecore