445 research outputs found
An effective model for the X 2A1-A 2B2 conical intersection in NO2
International audienceWe propose an efficient method for calculating the eigenstates and adjusting the parameters of an effective Hamiltonian, which reproduces the experimentally observed energy levels of NO2 up to 11 800 cm-1 above the quantum mechanical ground state, that is a few thousands of cm-1 above the X 2A1-A 2B2 conical intersection, with a rms error less than 4 cm-1. This method principally relies on the determination, through first-order perturbation theory, of an optimal basis for each surface, which takes into account the nonresonant energy shifts experienced by the states of this surface. As a result, the size of the matrix, which one has to build and diagonalize to converge the spectrum up to 11 800 cm-1, is of the order of 500-1000 instead of several tens of thousands. Thank to this Hamiltonian, the analysis of the experimental spectrum up to 11 800 cm-1 could be completed. A detailed description of all states located above 9500 cm-1 is proposed, those lying below 9500 cm-1 being already known and tabulated
High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N
The first comprehensive high-resolution photoabsorption spectrum of 14N15N
has been recorded using the Fourier-transform spectrometer attached to the
Desirs beamline at the Soleil synchrotron. Observations are made in the extreme
ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed
absorption lines have been assigned to 25 bands and reduced to a set of
transition energies, f values, and linewidths. This analysis has verified the
predictions of a theoretical model of N2 that simulates its photoabsorption and
photodissociation cross section by solution of an isotopomer independent
formulation of the coupled-channel Schroedinger equation. The mass dependence
of predissociation linewidths and oscillator strengths is clearly evident and
many local perturbations of transition energies, strengths, and widths within
individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv
Theoretical investigation of finite size effects at DNA melting
We investigated how the finiteness of the length of the sequence affects the
phase transition that takes place at DNA melting temperature. For this purpose,
we modified the Transfer Integral method to adapt it to the calculation of both
extensive (partition function, entropy, specific heat, etc) and non-extensive
(order parameter and correlation length) thermodynamic quantities of finite
sequences with open boundary conditions, and applied the modified procedure to
two different dynamical models. We showed that rounding of the transition
clearly takes place when the length of the sequence is decreased. We also
performed a finite-size scaling analysis of the two models and showed that the
singular part of the free energy can indeed be expressed in terms of an
homogeneous function. However, both the correlation length and the average
separation between paired bases diverge at the melting transition, so that it
is no longer clear to which of these two quantities the length of the system
should be compared. Moreover, Josephson's identity is satisfied for none of the
investigated models, so that the derivation of the characteristic exponents
which appear, for example, in the expression of the specific heat, requires
some care
Anharmonic stacking in supercoiled DNA
Multistep denaturation in a short circular DNA molecule is analyzed by a
mesoscopic Hamiltonian model which accounts for the helicoidal geometry.
Computation of melting profiles by the path integral method suggests that
stacking anharmonicity stabilizes the double helix against thermal disruption
of the hydrogen bonds. Twisting is essential in the model to capture the
importance of nonlinear effects on the thermodynamical properties. In a ladder
model with zero twist, anharmonic stacking scarcely affects the thermodynamics.
Moderately untwisted helices, with respect to the equilibrium conformation,
show an energetic advantage against the overtwisted ones. Accordingly
moderately untwisted helices better sustain local fluctuational openings and
make more unlikely the thermally driven complete strand separation.Comment: In pres
Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated <i>Flavobacteriia</i> and <i>Gammaproteobacteria</i>
Alga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria. In the present study, we constructed two “plurigenomic” (with multiple bacterial genomes) libraries with the 5 most interesting isolates (regarding their phylogeny and their enzymatic activities) of each class (Fv and Gm libraries). Both libraries were screened for diverse hydrolytic activities. Five activities, out of the 48 previously identified in the natural polysaccharolytic isolates, were recovered by functional screening: a xylanase (GmXyl7), a beta-glucosidase (GmBg1), an esterase (GmEst7) and two iota-carrageenases (Fvi2.5 and Gmi1.3). We discuss here the potential role of the used host-cell, the average DNA insert-sizes and the used restriction enzymes on the divergent screening yields obtained for both libraries and get deeper inside the “great screen anomaly”. Interestingly, the discovered esterase probably stands for a novel family of homoserine o-acetyltransferase-like-esterases, while the two iota-carrageenases represent new members of the poorly known GH82 family (containing only 19 proteins since its description in 2000). These original results demonstrate the efficiency of our uncommon “plurigenomic” library approach and the underexplored potential of alga-associated cultivable microbiota for the identification of novel and algal-specific enzymes
Renormalisation group determination of the order of the DNA denaturation transition
We report on the nature of the thermal denaturation transition of homogeneous
DNA as determined from a renormalisation group analysis of the
Peyrard-Bishop-Dauxois model. Our approach is based on an analogy with the
phenomenon of critical wetting that goes further than previous qualitative
comparisons, and shows that the transition is continuous for the average
base-pair separation. However, since the range of universal critical behaviour
appears to be very narrow, numerically observed denaturation transitions may
look first-order, as it has been reported in the literature.Comment: 6 pages; no figures; to appear in Europhysics Letter
Elliptic Quantum Billiard
The exact and semiclassical quantum mechanics of the elliptic billiard is
investigated. The classical system is integrable and exhibits a separatrix,
dividing the phasespace into regions of oscillatory and rotational motion. The
classical separability carries over to quantum mechanics, and the Schr\"odinger
equation is shown to be equivalent to the spheroidal wave equation. The quantum
eigenvalues show a clear pattern when transformed into the classical action
space. The implication of the separatrix on the wave functions is illustrated.
A uniform WKB quantization taking into account complex orbits is shown to be
adequate for the semiclassical quantization in the presence of a separatrix.
The pattern of states in classical action space is nicely explained by this
quantization procedure. We extract an effective Maslov phase varying smoothly
on the energy surface, which is used to modify the Berry-Tabor trace formula,
resulting in a summation over non-periodic orbits. This modified trace formula
produces the correct number of states, even close to the separatrix. The
Fourier transform of the density of states is explained in terms of classical
orbits, and the amplitude and form of the different kinds of peaks is
analytically calculated.Comment: 33 pages, Latex2e, 19 figures,macros: epsfig, amssymb, amstext,
submitted to Annals of Physic
The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1
Rhodopseudomonas palustris TIE-1 is a Gram-negative bacterium that produces structurally diverse hopanoid lipids that are similar to eukaryotic steroids. Its genome encodes several homologues to proteins involved in eukaryotic steroid trafficking. In this study, we explored the possibility that two of these proteins are involved
in intracellular hopanoid transport. R. palustris has a sophisticated membrane system comprising outer, cytoplasmic, and inner cytoplasmic membranes. It also divides asymmetrically, producing a mother and swarmer cell. We deleted genes encoding two putative hopanoid transporters that belong to the resistance–nodulation–
cell division superfamily. Phenotypic analyses revealed that
one of these putative transporters (HpnN) is essential for the movement of hopanoids from the cytoplasmic to the outer membrane, whereas the other (Rpal_4267) plays a minor role. C30 hopanoids, such as diploptene, are evenly distributed between mother and swarmer cells, whereas hpnN is required for the C35 hopanoid, bacteriohopanetetrol, to remain localized to the mother cell type. Mutant cells lacking HpnN grow like the WT at 30 °C but slower at 38 °C. Following cell division at 38 °C, the ΔhpnN cells remain
connected by their cell wall, forming long filaments. This phenotype may be attributed to hopanoid mislocalization because a double mutant deficient in both hopanoid biosynthesis and transport does not form filaments. However, the lack of hopanoids severely compromises cell growth at higher temperatures more generally. Because hopanoid mutants only manifest a strong phenotype under
certain conditions, R. palustris is an attractive model organism in which to study their transport and function
Atlantic reef fish biogeography and evolution
Copyright © 2007 The Authors.Journal compilation © 2007 Blackwell Publishing Ltd.AIM: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. RESULTS: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as ‘filters’ by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism for much of the recent diversification of reef fishes in the Atlantic
- …
