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The exact and semiclassical quantum mechanics of the elliptic billiard is investigated. The
classical system is integrable and exhibits a separatrix, dividing the phase space into regions
of oscillatory and rotational motion. The classical separability carries over to quantum
mechanics, and the Schro� dinger equation is shown to be equivalent to the spheroidal wave
equation. The quantum eigenvalues show a clear pattern when transformed into the classical
action space. The implication of the separatrix on the wave functions is illustrated. A uniform
WKB quantization taking into account complex orbits is shown to be adequate for the
semiclassical quantization in the presence of a separatrix. The pattern of states in classical
action space is nicely explained by this quantization procedure. We extract an effective Maslov
phase varying smoothly on the energy surface, which is used to modify the Berry�Tabor trace
formula, resulting in a summation over nonperiodic orbits. This modified trace formula
produces the correct number of states, even close to the separatrix. The Fourier transform of
the density of states is explained in terms of classical orbits, and the amplitude and form of
the different kinds of peaks is analytically calculated. � 1997 Academic Press

1. INTRODUCTION

The semiclassical quantization of a Hamiltonian system is deeply connected to
the structure of its phase space. The generic Hamiltonian system contains a com-
plicated mixture of near-integrable and chaotic motion, and a consistent semiclassi-
cal quantization scheme does not exist for the generic case. It does exist, however,
in the nongeneric limiting cases, the integrable and the ergodic systems.

During the last two decades much progress has been made for ergodic systems.
The Gutzwiller trace formula gives the density of states as a sum over periodic
orbits [1�3]. It works well if all periodic orbits are unstable and isolated, i.e. for
hyperbolic systems, and it is the starting point for most calculations in this field.

The investigation of integrable systems reaches back to the beginning of quantum
mechanics. Bohr and Sommerfeld, among others, succeeded in the quantization of
actions. The hydrogen atom is the most famous example. The deficiency of the old
quantum mechanics to calculate, e.g., the spectrum of the helium atom was set
clearly by Einstein [4]. He formulated the Bohr�Sommerfeld quantization condi-
tions in terms of invariant tori which foliate the phase space of integrable systems.
Moreover, he noted that this foliation is absent in generic systems, such that this
quantization scheme fails. The same year when Schro� dinger introduced his famous
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equation Brillouin explained that the quantization of tori is a consequence of the
single-valuedness of the quantum mechanical wave functions. Keller showed how
the quantization conditions have to be modified because of caustics in the classical
motion [5]. For an integrable system with f degrees of freedom described by its
phase space variables (q, p)=(q1 , ..., qf , p1 , ..., pf) the Einstein�Brillouin�Keller
(EBK) quantization conditions for the actions Ii read

Ii=
1

2? �
#i

p dq=� \ni+
:i

4 + , (1)

where the integration is to be taken along f topologically independent paths #i

around the f-torus and :i are the Maslov indices due to the classical caustics.
This paper deals with a nontrivial example of an integrable system: the planar

elliptic billiard. Classically ``billiard'' refers to a system in which a point particle
moves freely inside a domain and is elastically reflected at the domain boundary.
The corresponding quantum mechanical problem is to solve the eigenvalue problem
of the Laplace operator inside the domain for Dirichlet boundary condition.
Billiards have become popular because for them, on the one hand, the classical
calculations are easier than for systems with smooth potential, and on the other
hand, they allow for experimental measurements, e.g. [6�8]. Jacobi [9] showed
that elliptic coordinates separate the geodesic flow on the ellipsoid, which contains
our billiard as a limiting case. The same coordinate system leads to the separation
of Schro� dinger's equation, including the Dirichlet boundary condition, into two
Mathieu equations.

Integrability allows for a semiclassical quantization a� la EBK. In our case,
however, there are problems due to the presence of a separatrix. For all energies it
divides phase space into regions of rotational and oscillatory motion [10]. The
Maslov indices are different for the two classical regions, resulting in a discontinuity
in the EBK quantization condition which in turn leads to ambiguities for states
close to the separatrix. To overcome this problem it is necessary to introduce a
uniform quantization condition. This can be done, e.g., by investigating the
asymptotics of the solutions of Schro� dinger's equation close to the separatrix, which
was carried out for the elliptic billiard in [11] (see also [12]). The same quantiza-
tion procedure was used in [13] for the general class of geodesic flows on Liouville
surfaces, which separates in the same way but contains the elliptic billiard only in
a singular limit. We will follow a different quantization approach based on connec-
tion matrices between the amplitudes of WKB wave functions (see [14, 15], the
review of Berry and Mount [16], and the references therein). This approach can be
interpreted in terms of orbits with complex classical action. A transformation of the
quantum mechanical eigenvalues to classical action space allows for a unique
mapping of the eigenvalues to the quantum numbers.

The discontinuity in the EBK quantization condition carries over to the
Berry�Tabor trace formula [17]��the analogue of the Gutzwiller trace formula for
integrable systems. The resonant tori, foliated by families of periodic orbits, take
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over the role of the isolated periodic orbits as the objects to be summed over. The
uniformization employed in [17] incorporates the influence of orbits with negative
classical action in the vicinity of isolated stable periodic orbits. We will introduce
a modification of the Berry�Tabor trace formula which takes care of the separatrix
in terms of an effective Maslov phase varying smoothly across. It will turn out that
in order to correctly produce eigenstates close to the separatrix the summation has
to be taken over nonperiodic orbits, i.e., over classical tori with in general irrational
winding number. This trace formula incorporates all kinds of classically nonreal orbits.

The Berry�Tabor trace formula was further investigated by Richens [18], who
showed that it contains contributions of the stable isolated periodic orbits, whose
contributions are equal to the corresponding terms in the Gutzwiller trace formula
[3]. We will use his results in the study of the length spectrum, extending the
``inverse quantum chaology'' (see, e.g., [19, 20]) to integrable systems.

After completion of this work there independently appeared a preprint by Sieber
[21], whose first part contains considerations similar to parts of our paper.
Nevertheless, the key point of his paper being the semiclassical consequences of the
deformation of an elliptic billiard to an oval, while we concentrate on the separatrix
and on complex orbits, the overlap is only mild.

The organization of our paper is as follows. We start with a short summary of
the classical facts in Section 2 and perform the exact quantum mechanical calcula-
tions in Section 3. In Section 4 we introduce a uniform WKB quantization
condition. This method gives an effective Maslov phase which is used to modify the
Berry�Tabor trace formula for systems with a separatrix in Section 5, resulting in
a sum over non-periodic orbits. The appearance of resonant tori in the length
spectrum, i.e., in the Fourier transform of the density of states, is investigated in
Section 6. The conclusion and an outlook are given in Section 7.

2. CLASSICAL MECHANICS

The classical dynamics of the planar elliptic billiard has been investigated by
many authors (see, e.g., [22, 10, 23, 24] and the references therein). We just give
a summary of the facts important for our purpose. Scaling the longer semimajor
axis to one, the boundary of the billiard is described by

x2+
y2

1&a2=1, 0�a<1, (2)

with foci at (x, y)=(\a, 0). The boundary of the ellipse is a ,-coordinate line of
the elliptic coordinates (\, ,) given by

(x, y)=(a cos , cosh \, a sin , sinh \), (3)

where the coordinate ranges are

&\max�\�\max=arccosh(1�a), 0�,<2?. (4)
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The lines \=const are confocal ellipses and the lines ,=const are confocal hyper-
bolas. Transforming (\, ,) to (&\, &,) does not change (x, y), thus the cylinder
(\, ,) # [&\max , \max]_S 1 gives a double cover of the configuration space. On this
cylinder the coordinate singularites of the elliptic coordinates are removed:
Crossing the x-axis between the foci corresponds to a crossing of \=0 on the
cylinder. Crossing the x-axis outside the foci is just the obvious rotation around the
cylinder. Introducing the conjugate momenta ( p\ , p,) the Hamiltonian of a particle
with unit mass moving freely in R2 reads

H=
p2

\+p2
,

2a2(cosh2 \&cos2 ,)
. (5)

A reflection at the billiard boundary is simply described by (\, ,, p\ , p,) �
(\, ,, &p\ , p,). On the cylinder the reflection takes place at either end \=\\max ,
giving rise to a geodesic billiard with metric ds2=a2(cosh2 \&cos2 ,)(d,2+d\2)�2
on the cylinder. Note that ds2=0 at the foci. The results of [13] about smooth
geodesic flows are not applicable in our case. The billiard either introduces an
infinity of finite width in the metric or changes the smooth configuration space
(torus) to a manifold with boundary (cylinder).

Multiplying Eq. (5) with the denominator of the right hand side yields the
separation constant K:

p2
\+(K&2Ea2 cosh2 \)=0, (6)

p2
,&(K&2Ea2 cosh2 ,)=0. (7)

Here E>0 is the energy, and }2=K�(2E ) is the second constant of the motion.
Since H and K are in involution, the system is integrable and therefore the energy
surface is foliated by invariant Liouville 2-tori. Each of the equations (6) and (7)
can be interpreted as a Hamiltonian system with one degree of freedom, with effec-
tive energy E\=&E}2 and E,=E}2 respectively, and a sum of kinetic term and
effective potential Veff (\)=&Ea2 cosh2(\) or Veff (,)=Ea2 cos2(,). The topologi-
cally different types of motions can be discussed in terms of the effective potentials
shown in Fig. 1.

There are only two generic types of classically allowed motion. For }2>a2 the
trajectories avoid the interior of the ellipse cosh(\)=}�a, touching its boundary
between every two consecutive reflections at the billiard boundary. Each }
corresponds to two tori with opposite sense of rotation related by time reversal
symmetry. This ``type R'' motion is similar to the rotational motion in a planar
circular billiard. On the cylindric double cover each type R torus appears twice,
each copy with constant sign of \. For }2<a2 the trajectories always cross the
x-axis between the foci; they are confined to the domain enclosed by the hyperbolas
cos ,=\}�a. There exists only one ``type O'' torus for each }2<a2. On the
cylinder the motion is an oscillation in , with alternating reflections with the upper
and the lower boundary, \=\\max . Each of the two copies has constant sign of
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Fig. 1. Effective potentials Veff (\) and Veff (,) on the double cover and the tori of the elliptic
billiard. Real tori are marked by R (rotations) or O (oscillations). The classically forbidden motion are
TR (tunneling from region 1 to 2 in the radial direction), TO (tunneling from region 1 to 2 in the
angular direction), and Oc and TOc , the complex continuations of O and TO below the minimum of
Veff (,). Orbits with complex position are indicated by a circled cross.

,&?. The special values }2=0 and }2=1 represent the stable oscillation along the
y-axis (os) and the sliding motion along the boundary (ob), respectively. }2=a2

characterizes the separatrix motion and the unstable isolated periodic orbit. An
orbit on the separatrix alternately passes through one or the other focus between
reflections. The unstable periodic orbit in the center of the separatrix performs an
oscillation along the x-axis (ou). It is the only orbit which passes through both foci
between consecutive reflections. The motion on the double cover for the critical
value }2=a2 is not well defined upon crossing the foci.

The length of the unstable orbit is Lu=4, the stable orbit has Ls=4 - 1&a2 and
the length of the sliding orbit is just the circumference Lb=4E(a) of the billiard.
E(k) is the complete elliptic integral of the second kind in the notation of [25, 26].
The action S and the period T of these orbits can easily be obtained from
S=- 2E L and T=�S��E=S�(2E)=L�- 2E .

The calculation of the action variables I=(I\ , I,)=((1�2?) � p\ d\, (1�2?) � p, d,),
the frequencies |=�H��I, and the winding number w=|,�|\ of the elliptic
billiard can be found in [10]. Since the system is invariant under reflections about
the x- and y-axis, we will also consider the desymmetrized elliptic billiard, that is
a quarter of the full ellipse. For type R (}2>a2) the actions I� and the winding
number w~ =|~ ,�|~ \ of the desymmetrized billiard are

I� \=
- 2E

? \sin /&}E \/,
a
}++=I\ ,

I� ,=
- 2E

?
}E \a

}+=\
1
2

I, , (8)

w~ =F \/,
a
}+<K \a

}+=\2w,

54 WAALKENS, WIERSIG, AND DULLIN



File: 595J 571506 . By:SD . Date:24:09:97 . Time:09:57 LOP8M. V8.0. Page 01:01
Codes: 3197 Signs: 2263 . Length: 46 pic 10 pts, 197 mm

with sin2 /=(1&}2)�(1&a2). For type O (}2<a2) they are given by

I� \=
- 2E

? \sin �+
a2&}2

a
F \�,

}
a+&aE \�,

}
a++=

1
2

I\ ,

I� ,=
- 2E

? \aE \}
a+&

a2&}2

a
K \}

a++=
1
2

I, , (9)

w~ =F \�,
}
a+<K \}

a+=w,

with sin2 �=(1&a2)�(1&}2). K(k) is the complete elliptic integral of the first
kind, F(+, k) and E(+, k) are incomplete elliptic integrals of first and second kind.

Figure 2a shows the energy surfaces H(I� )=E in action space. All these lines have
the same shape, because the actions scale with - E . We denote the curvature of
the energy surfaces by C and its sign by ;. This means ;=+1 for the patch being
concave away from the origin (type R) and ;=&1 for the convex patch (types O).
In the limit }2 � &� the curvature tends to zero. The energy independent winding
number w~ is shown in Fig. 2b. The cusp at }2=a2 has the limiting value w~ =1. The
winding number of the stable isolated orbit os with }2=0 is 2 arccos(a)�?.

Beside the three special periodic orbits os , ou , and ob there are families of
periodic orbits on resonant tori. A +-resonant torus is determined by its rational
winding number w(})=+,�+\ , or equivalently, by the frequency vector | being
proportional to +=(+\ , +,), where +\ and +, are relatively prime integers. We
denote the action vector of a +-resonant torus by I +. The action of a prime
nonisolated orbit is given by S(I +)=2?+I +. Fig. 3 shows prime orbits of ( +\ , +,)-
resonant tori for type R and O for the full elliptic billiard. According to (8), the
winding number for type R is reduced by a factor 2 if compared with Fig. 2b. The
orbits are chosen in such a way that they are always symmetric to the y-axis and,
if possible, also to the x-axis. For type R the integer +\ counts the number of reflec-
tions at the boundary and +, the rotations about the origin. For type O the integer

Fig. 2. Energy surfaces (a) for the values E=0.5, 1, 1.5, 2, 2.5, 3 and the winding number (b) of the
desymmetrized elliptic billiard with parameter a=0.7. The line }2=a2 (I� \=((1&a)�a) I� ,) represents the
separatrix motion and the unstable oscillation along the x-axis. The line }2=0 (I� ,=0) marks the stable
oscillation along the y-axis, and }2=1 (I� \=0) corresponds to the sliding motion along the billiard
boundary. The dotted lines represent the real complex tori of type Oc .
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+\ gives half the number of reflections, and +, is half the number of times that the
orbit touches the caustics cos ,=\}�a.

In the course of this paper it will be important to distinguish different kinds of
nonreal orbits which have to be taken into account in the uniformization. Since we
are dealing with a separable system, it is sufficient to classify nonreal orbits for one
degree of freedom systems. We define and distinguish nonreal orbits via the way a
(generalized) action integral can be assigned to them. Allowing complex values for
the momentum p and the position q, we are dealing with 2?I=� p(q) dq, where
p(q)2=2(E&V(q)), and the integral is taken between (possibly complex) turning
points, i.e., the (possibly complex) zeroes of E&V(q). A real orbit has an action
integral connecting real turning points on a path (in the complex q-plane) for which
p is real, i.e., just along the real q-axis. Of course the value of this integral is
the same for any path in the complex plane encircling the two turning points.
The special integration path chosen can be thought of as the orbit of the particle.
A ``tunneling orbit'' also connects real turning points; however, the energy E is smaller
than V(q), such that p is purely imaginary along the real q-axis, hence giving a
purely imaginary action. There are two more nonreal orbits connecting complex
turning points. The ``scattering orbit'' is related to quantum mechanical scattering
resonances forming above a potential maximum. Its path of integration is taken to
be an anti-Stokes line. It is the line of q in the complex plane for which the integral
�q

q1
p(q$) dq$ is purely imaginary, where q1 is a turning point. In the case of an even

potential with maximum at 0, as it is the case for the elliptic billiard, the anti-Stokes
line is just the imaginary q-axis, and the momentum is real. By construction the
action of a scattering orbit is purely imaginary. In the following, tunneling and
scattering orbits will be treated similarly, we refer to both of them as ``imaginary
complex orbits.'' They are related to the ``ghost orbits'' described in [27] and the
barrier penetration integral of Miller [14] gives i times their action (i=- &1).
The final type of nonreal orbit is related to orbits below a potential minimum. They
are obtained by integrating along a Stokes line (on which the integral is always
real) between complex turning points; hence, their action will be real. In the case
of a symmetric potential with minimum at 0 the Stokes line is just the imaginary
q-axis, and the momentum is purely imaginary. We call this kind of nonreal orbit
``real complex orbit,'' because its action is real. These orbits are the ``complex
orbits'' described in [17].

In separable two degrees of freedom systems all the combinations of the four
possibilities might occur in principle. Actually there is some arbitrariness in how to
combine the possible real and nonreal motions from the separated degrees of
freedom. However, in the present case it seems to be natural to form pairs from
tunneling and scattering orbits, giving rise to imaginary complex tori. These tori are
denoted by TO and TR in Fig. 1. Continuing the TO torus below the potential min-
imum gives rise to the TOc torus. The real complex orbit is the natural continuation
of an elliptic orbit, which disappears at the minimum of the potential. The torus
denoted by Oc in Fig. 1 is therefore real in its \-part and real complex in its ,-part.
These real complex tori lead to an energy surface that extends beyond the positive
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quadrant, as discussed by Berry and Tabor. There are no continuations of the R
and TR tori, since for the \-motion the hard billiard wall does not create any
complex zeroes for low energy. Therefore the energy surface cannot be continued at
}2=1.

For type Oc (}2<0) the actions and winding number of the desymmetrized
billiard are given by

I� \=
- 2E

?
(- 1&}2 sin {+- a2&}2 (F({, k)&E({, k)))=

1
2

I\ ,

I� ,=
- 2E

?
(- a2&}2(E(k)&K(k)))=

1
2

I, , (10)

w~ =F({, k)�K(k)=w,

with sin2 {=1&a2 and k2=&}2�(a2&}2). The formulas (10) equal the formulas
(9) for imaginary }. It is important to notice that, although the actions are real, the
tori are classically not allowed, because both position and momentum are complex.
These formulas define the continuation of the energy surface shown in Fig. 2a. The
winding number of the tori of type Oc decreases very slowly to zero for }2 � &�.
Resonant real complex tori can also be defined, because their real frequencies can
fulfill a resonance conditions. The action S and the period of a nonisolated orbit on
a resonant complex torus are always positive, although the angular component I,

is negative.

3. EXACT QUANTUM MECHANICS

The Schro� dinger equation including the boundary condition separates in elliptic
coordinates. Using the radius-angle parametrization (\, ,) gives the standard form
of the Mathieu equation,

�2
\F&(*&c2 cosh2 \) F=0 (11)

�2
, G+(*&c2 cos2 ,) G=0, (12)

which follows directly from (6), (7). The relation to the physical parameters is

c2=2Ea2��2 (13)

*=2E}2��2. (14)

For Dirichlet boundary conditions the eigenfunction 9(\, ,)=F(\) G(,) must
be zero on the billiard boundary, which gives F(\max)=0. The solution in the
angular variable must be periodic with period 2?, to give a physical solution.
Floquet theory guarantees the existence of solutions with period a multiple of ?,
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because (12) is linear with ?-periodic coefficients. In the classical terminology the
special values of the parameters, for which ? or 2? periodic solutions of (12) exist
are called characteristic values. For even solutions, i.e., G(0)=0, they are denoted
by a=*&c2�2 and similarly by b for odd solutions. Since the Mathieu equation is
an equation of Sturm�Liouville type, these eigenvalues are all real, ordered as
a0<b1<a1 } } } for fixed c2 and the corresponding eigenfunctions have i zeroes in
the interval , # [0, ?). Solutions with even i have period ?; those with odd i have
period 2?.

If G(,) is even, then 9 is symmetric with respect to the x-axis: 9(x, y)=
9(x, &y) (see (3)). We denote this symmetry by ?y=+1, respectively by ?y=&1
for odd G with 9(x, y)=&9(x, &y). Similarly, 9 can be even or odd with respect
to x, which is denoted by ?x=\1. The four possible parity combinations are given
in Table I, together with the relative sign of the value of G(?�2k), k=0, 1, 2, 3. In
order to obtain a smooth wave function 9 in the part of the x-axis connecting the
foci, the radial solution must satisfy F(0)=0 if G is odd. This is equivalent to the
statement that the value of the wavefunction F(\) G(,) on the cylindric double
cover must be invariant under the involution (\, ,) [ (&\, &,), because this
leaves the point (x, y) in R2 fixed. If both parities are the same, the angular solution
has period ?. In the last column we indicate which coordinate axis becomes a nodal
line for the wave function of the corresponding parity. The given signs are only
defined up to a global factor.

We define the radial quantum number r as the number of zeroes of F(\) in the
range \ # (0, \max), i.e., not counting the zeroes at the boundaries. Similarly the
angular quantum number l gives the number of zeroes of G(,) in the range
, # (0, ?�2), again not counting possible zeroes at the boundaries. This choice of
quantum numbers is consistent with the EBK quantization (1) for the symmetry
reduced system. Therefore it does not directly give the number of nodes of the wave
functions in the full system: depending on the parity there are 0, 1, 2, or 3 addi-
tional zeroes in the range [0, ?] for the states with parity ++, &+, +&, and
&&, respectively, such that the total number of angular nodes is 4l+2&?x&?y .

TABLE I

Symmetry Properties of the Wave Function Depending on the Four Parities

?x ?y F(0) G(0) G \?
2+ G(?) G \3?

2 + Period G(,) Node

+ + + + \ + \ ?
& + + + 0 & 0 2? x=0
+ & 0 0 + 0 & 2? y=0
& & 0 0 0 0 0 ? x=0, y=0

Note. The four states which have the same quantum number are listed in the order of
increasing energy.

59ELLIPTIC QUANTUM BILLIARD



File: 595J 571511 . By:SD . Date:24:09:97 . Time:09:57 LOP8M. V8.0. Page 01:01
Codes: 2632 Signs: 1897 . Length: 46 pic 0 pts, 194 mm

The energy eigenvalues for the four states with the same quantum numbers are in
the same order. In general we denote a state by (r, l )?x ?y

. Note that the four dif-
ferent parity combinations correspond to the description of the symmetry reduced
quarter billiard, where on the coordinate axes Dirichlet (parity &1) or Neumann
(parity +1) boundary conditions are required. To illustrate the symmetries, the
probability density of the (0, 0) state for each parity is shown in Fig. 4.

The transformation cos ,=' and cosh \=! gives the algebraic form of the
Mathieu equation

(1&!2) �2
! f&!�! f+(*&c2!2) f=0 (15)

(1&'2) �2
' g&'�' g+(*&c2'2) g=0, (16)

from which it is obvious that the radial and the angular equation are actually the
same, only evaluated on different ranges of the independent variable, ' # [&1, 1],
! # [1, 1�a]. This equation, although it has regular singular points at !, '=\1, is
better suited for the numerical solution of the eigenvalue problem. The requirement
for the solution to be smooth at these points replaces the periodic boundary
condition.

The Mathieu equation is a special case of the spheroidal wave equation,

(1&x2) �2
xhm&2(m+1) x�xhm+(*&1�4&m(m+1)&c2x2) hm=0, (17)

which appears in the case of the billiard inside the rotational symmetric ellipsoid;
m is the quantum number of the angular momentum of rotation around the axis
of symmetry. With m=&1�2 in (17) we reobtain (16) and (15). We will see that
m=+1�2 also produces solutions of the Mathieu equation.

In order to obtain solutions with ?y=&1, which must be zero at ,=0, ?,
we must construct solutions which are zero at the regular singular points. It is

Fig. 4. Contourplots of the probability density of the wave functions for the four different parity
states (?x , ?y) for quantum numbers (r, l )=(0, 0) and with a=0. 7. The contourlines are equally spaced
from 0 to the maximum probability density of the wave function.
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necessary to factor out this behavior by the ansatz g(x)=- 1&x2 h1�2(x), f (x)=
- x2&1 h1�2(x), which transforms (15) and (16) into the equation

(1&x2) �2
xh1�2&3x�xh1�2+(*&1&c2x2) h1�2=0, (18)

which again is a special case of the spheroidal wave equation (17), in this case
corresponding to m=+1�2, however.

In Fig. 5 four solutions of (17) are shown. The radial and the angular part
smoothly join at the regular singular point at x=1. We conclude that the spectrum
of the two-dimensional billiard is obtained from the spectrum of the three-dimen-
sional rotational symmetric billiard if the angular quantum number m in the
spheroidal wave function is set to a half integer ``spin'' number \1

2 instead of to an
integer number as in the three-dimensional problem.

In the standard theory of the Mathieu equation c is fixed and the eigenvalue *
is determined. In the billiard problem we have to simultaneously satisfy also the
boundary condition for the radial equation. Since both separation constants * and
c2 appear in each equation, although the variables are separated, the separation
constants are not separated (see, e.g., [28]), which requires a nonstandard
approach to the numerical solution of this Sturm�Liouville eigenvalue problem.
For the angular equation (16) we have boundary conditions at '=&1 and at
'=0, corresponding to ,=? and ,=3?�2, for the radial equation at !=1 and
!=1�a, corresponding to \=0 and to the billiard boundary. Introducing a new
independent variable by !=1�a+`(1�a&1), the ranges of ` and ' coincide, and we
can use a standard shooting method as, e.g., described in [29], to solve both

Fig. 5. The solutions of (17) for the state r=1, l=4 with the four possible parities, i.e., even or odd
at x=0 (?x) and m=&1

2 for ?y=1 or m= 1
2 for ?y=&1; a=0.7.
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coupled eigenvalue problems simultaneously. Even though the final solution is
smooth, as shown in Fig. 5, it is not possible to numerically integrate through the
singularity. Instead the integration always starts an epsilon away from the
singularity with an analytically calculated regular initial velocity [29]. In order to
find a specific state it is necessary to have a fairly good initial guess for the
eigenvalues; otherwise the shooting method might converge to another state. We
calculate the initial guess via the uniform WKB approach described in the next
section and have found that this always works.

In Fig. 6 a few symmetric wavefunctions are illustrated. The wave functions for
the other parities are related to the ++ states shown in Fig. 6 as illustrated in
Fig. 4. In the left column the localization around the stable isolated periodic orbits
is clearly visible. It becomes stronger when r is increased. In the bottom row the
same happens for the orbit ob . Both cases can be explained by considering the
WKB wavefunctions for the corresponding states, which is exponentially small
outside the classical caustics and nonzero inside. Although the WKB wavefunction
diverges at the classical caustic it is correct insofar as the quantum probability den-
sity is relatively high close to (and inside) the classical caustic, as can be seen, e.g.,
for the (4, 4)++ state. The surprising fact, which cannot be explained by the above
reasoning, is the localization around the focus points, e.g., in the (1, 4)++ state.
This phenomenon occurs at the transition from the rotational states (classical
caustic type R) to oscillating states (classical caustic type O), i.e., close to the classi-
cal separatrix. Eigenstates with higher quantum numbers can show even stronger
localization around the foci, because their second eigenvalue can be found closer to

Fig. 7. The eigenvalues (E, }2) of the eigenstates of the elliptic billiard with a=0.7. The region of
type R states (rotational, }2>a2) is shown in light grey, type O states (oscillating, }2<a2) in dark grey.
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the critical value }=a=0.7. Besides this very strong localization on the focus
points these states also show a ``scar'' [30] of the unstable orbit; e.g. see the
(2, 5)++ state. Although the probability density is low, compared to the one in the
focus points, it is high compared to the region further away from the x-axis. The
behaviour outside the foci can again be explained by the WKB wave function,
which diverges for y=0 for the critical value }=0.7. We conclude that in the
integrable elliptic billiard states localize around stable periodic orbits, and they also
show ``scars'' along the unstable periodic orbit, with an additional strong localization
on the focus points of the ellipse.

The eigenvalues of the elliptic quantum billiard are shown in Fig. 7, and some of
them are listed in Table III. The oscillating states of type O are always non-
degenerate. The rotational states of type R become more and more degenerate
when the distance from the separatrix is increased. The classical reason for this
increasing degeneracy is the fact that there are two tori for fixed constants of
motion, connected via time-reversal symmetry. In a simple EBK quantization these
states would be exactly degenerate. Two type R states with the same r and l become
(approximately) degenerate if they have period 2?, i.e., if ?x?y=&1. If, however,
the period is ?, ?x?y=1, two states with the same r but l differing by 1 become

Fig. 8. The classical actions J=2I� in units of � corresponding to the exact quantum mechanical
eigenstates in the elliptic billiard for a=0.7. Except for states close to the separatrix, they are located
on a lattice given by EBK quantization. The structure near the separatrix can be explained by uniform
WKB quantization. Grey code as in Fig. 7.
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degenerate. This is consistent with the fact that the total number of nodes on
the circle , # [0, 2?) is 4l+2&?x&?y , which gives the same number for the
degenerate states. The shift from degenerate states of type R to nondegenerate states
of type O can most clearly be seen if the exact quantum eigenvalues E, }2 are trans-
formed into the classical action space using Eqs. (8) and (9) (see Fig. 8). In order
to represent the actions of the full system for both types of motion in one picture
in such a way that on average one state occupies a box of size �2, we use the
doubled action of the symmetry reduced billiard J=2I� . This amounts to doubling
the action I\ for type R tori, which can be understood from two facts: first, there
are two classical tori with the same action for type R tori, and second, the corre-
sponding quantum mechanical states are degenerate in the EBK approximation.
The type of movement that each parity state can perform in its ``semiclassical
quantum cell'' will become clear in the next section.

4. UNIFORM WKB QUANTIZATION

Consider a Hamiltonian H=p2�2+V(q) with a potential as, e.g., given by the
effective potentials of Section 2 (see Fig. 1). Let V(q)<E for q<q1 and q>q2 and
V(q)>E in the range q1<q<q2 . The WKB solutions to the left ( j=1) and to the
right ( j=2) of the potential barrier are

�j (q)=(A+
j exp(iSj (q)��)+A&

j exp(&iSj (q)��))�- p(q), (19)

where

p(q)=- 2(E&V(q)), Sj (q)=|
q

qj

p(q$) dq$. (20)

The matrix connecting the constants A+
1 and A&

1 to A+
2 and A&

2 (see, e.g., the
review of Berry and Mount [16] and the references therein) is given by

\A+
2

A&
2 +=M \A+

1

A&
1 + , M=e3�� \- 1+e&23��

i
&i

- 1+e&23��+ , (21)

with the penetration integral 3=&i �q2
q1

p(q$) dq$. In the terminology of Section 2
this is i times the action of an imaginary complex tunneling orbit. This formula is
also valid in the case where the energy E lies everywhere above the potential V(q).
Then the classical turning points become complex (q1 complex conjugate to q2) and
the penetration integral 3 becomes negative, corresponding to an imaginary com-
plex scattering orbit. In a potential with several turning points in each region away
from the classical turning points a WKB wave function is reasonable. In classically
forbidden regions the phase S becomes complex leading to a real exponential.
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Uniform semiclassical quantization conditions may be obtained by a piecewise con-
nection of these wave functions and by imposing the correct boundary conditions,
e.g., an exponential decay in classically forbidden regions, periodic boundary condi-
tions in the case of a rotor with a potential, or Dirichlet conditions in the case of
a hard potential wall, e.g., in a billiard. The resulting quantization conditions take
into account real tori and imaginary complex orbits.

The quantization conditions for the planar elliptic billiard are obtained from the
effective potentials shown in Fig. 1. It is preferable to discuss the symmetries of the
semiclassical wavefunctions on the double cover, especially for Fj (\), Eq. (19).
The wave functions Fj (\) are symmetric or antisymmetric with respect to \=0,
corresponding to ?y=+1 or ?y=&1 (see Table I), consequently

\A+
2

A&
2 +=?y \0

1
1
0+\

A+
1

A&
1 + . (22)

The matrix P describes the phase shift along the classically allowed region

P=\ei(?�2) J\��

0
0

e&i(?�2) J\��+ , (23)

where it is important not to use the action I\ of the full billiard, because this quan-
tity jumps by a factor of 2 as the effective energy increases beyond the top of the
barrier. Instead we use J=2I� as introduced in the last section, such that the phase
shift is continuous at the transition from type O to type R motion. Inserting the
Dirichlet boundary conditions F1(\0)=F2(\3)=0 into (19) leads to

\A+
1

A&
1 + B P \ 1

&1+ , \A+
2

A&
2 + B P&1 \ 1

&1+ . (24)

The fourth relation among the constants Ai is given by (21), where the barrier
penetration integral 3=3\ is calculated from one turning point to the other and
is given by

&2 - 2E }(E(- 1&a2�}2)&K(- 1&a2�}2)) type TR

3\={&2 - 2E a \E(- 1&}2�a2)&
}2

a2 K(- 1&}2�a2)+ type TO (25)

&2 - 2E - a2&}2 E(a�- a2&}2) type TOc .

The action of imaginary complex orbits of type TOc will be needed in the next
section.

Composing the connection formula (21), the symmetry (22), and the boundary
conditions (24) gives

PMP \ 1
&1+=?y \&1

1 + . (26)
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Decomposing this complex equation into its real and imaginary part we obtain the
quantization conditions for the radial degree of freedom,

cos(?J\ ��)=
&?y

- 1+e23\��
(27)

and

sin(?J\��)=
&1

- 1+e&23\��
, (30)

which have to be fulfilled simultaneously. The second equation is not independent
of the first one, it just selects half the number of the solutions of the first equation.

For the WKB wave function G(,) we use Veff (,) (Fig. 1b), and we impose
periodic boundary conditions. Following the calculations of Miller [14] for the
different parities we obtain the quantization conditions

cos(?J, ��)=
?x?y

- 1+e23,��
(29)

and

sin(?J,��)=
?x

- 1+e&23,��
, (30)

with 3,=&3\. The equivalence of the absolute values of 3\ and 3, is a result of
the especially symmetric separation of the Hamiltonian (5). The condition in
Eq. (30) just selects the x-parity of the solutions of (29).

In Table II the limiting cases for large |3 | of the right-hand sides of the
Eqs. (27)�(30) are given. The resulting EBK quantization conditions for the full
billiard with quantum numbers (n\ , n,) and the connection to the quantum

TABLE II

The Limiting Cases of the Right-Hand Sides of Eqs. (27)�(30)

Eq. type O : 3\=&3,<<0 type R : 3\=&3,>>0

(27)
(28)

&?y

0 = I\=J\=(n\+4�4) �

n\=2r+(1&?y)�2
0
&1= I\=J\ �2=(n\+3�4) �

n\=r

(29)
(30)

0
?x= I,=J,=(n,+2�4) �

n,=2l+(1&?x)�2
?x?y

0 = I,=\J,=\n,�

n,=2l+(2&?x&?y)�2

Note. The quantum numbers for the corresponding EBK quantization
conditions are n\ , n, # N _ [0] for the full system and r, l # N _ [0] for the
desymmetrized billiard.
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numbers (r, l ) of the symmetry reduced billiard are indicated. For type R motion
these conditions are equivalent to the EBK quantization conditions for the circular
billiard.

How to calculate the (E, }2)- or the (J\ , J,)-spectrum from the conditions in
Eqs. (27)�(30)? The actions and the barrier penetration integrals are functions of
(E, }2). With Newton's method we can numerically obtain (E, }2) as functions of
(J\ , J,) and therefore 3\ and 3, as functions of (J\ , J,). Ignoring (28) and (30)
for the moment, the remaining equations (27) and (29) can thus be rewritten in the
form

f ?y
1 (J\ , J,) :=cos(?J\��)+?y g1(3\(J\ , J,))=0

(31)
f ?x , ?y

2 (J\ , J,) :=cos(?J,��)&?x?y g2(3,(J\ , J,))=0,

where g1 and g2 are smooth functions onto the interval (0, 1). A solution of (31)
can be viewed as an intersection of the lines f ?y

1 =0 and f ?x , ?y
2 =0 in action space

with the same corresponding parities. The solutions lie inside a box with the edges
defined by the extremal values of g1 and g2 . Because of the periodicity of the left-
hand sides of Eqs. (27)�(30) these boxes are always arranged in the same way inside
a cell in the (J\ , J,)-space. We call these quadratic cells ``semiclassical quantum
cells'' with quantum numbers (r, l ). Their edges have length 2J\=2J,=2� and
they tessellate the whole (J\ , J,)-space. Inside a quantum cell there are four quan-
tum states, one for each parity. Each state of fixed parity is confined to a ``parity
box'' of width ��2, shown by bold lines in Fig. 9. The size of the parity box is a
result of the fact that the Maslov indices change by two upon the transition of the
separatrix, see Table II. These parity boxes take care of the remaining conditions
(28) and (30): inside a box they are automatically fulfilled when (31) holds. To find
the solution guaranteed to lie in the interior of a box, we use the bisection method
described in [31]. Having got all solutions in action space, we compute again the
solutions in (E, }2)-space with Newton's method to obtain the semiclassical eigen-
value spectrum. Introducing the semiclassical quantum cells in action space ensures
that always the right state is found, even when two states are almost degenerate.
The method can easily be extended to the case of more than two degrees of
freedom.

Figure 10 and Table III show the result of the semiclassical calculation compared
to the exact quantum mechanical results. The distinction between the parities is
omitted in Fig. 10 because this is already clear from Fig. 8. In Fig. 11 the relative
errors of the semiclassical eigenvalues (Eqm&Esc)�Eqm and (}qm&}sc)�}qm are
plotted versus }qm , such that the behavior of the error with respect to the position
of the state on the classical energy surface can be seen. The semiclassical energy
eigenvalues are almost always too low (see also Table III). The opposite holds for
the values of the second eigenvalue, which usually are too high. The only exception
(for both eigenvalues) occurs in the neighborhood of the classical separatrix. The
fact that Fig. 11 looks rather symmetric indicates that the relative errors of the two
eigenvalues are strongly correlated. Concerning the semiclassical limit we see series
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of states with increasing r quantum number and decreasing error for small }, and
series with increasing l quantum number and decreasing error for large }. However,
increasing l with }<a does not decrease the error. The error of the whispering
gallery states (0, l ) is particularly large. In general, however, the agreement between
the exact eigenvalues and the semiclassical values is very good.

Now we study the change of the regular lattice obtained from EBK quantization
induced by the uniformization. There are three typical situations in action space
represented in Fig. 9: region R (a) and region O (b) both far away from the
separatrix and the region close to the separatrix (c). In region R the EBK states

Fig. 9. Schematic view of the four states in a single semiclassical quantum cell (2J\=2J,=2�) for
(a) the region R, (b) the region O, and (c) close to the separatrix corresponding to the states with
quantum numbers (0, 1). The intersections of the lines f ?y

1 =0 and f ?x , ?y
2 =0 with equal parities (dots)

are the solutions of the quantization conditions (27)�(30) if they are located inside a parity box. The
squares and the triangles are the states obtained from EBK quantization in regions R and O, respec-
tively. Parity boxes that are crossed by the bold dashed separatrix may contain two EBK states (bold
squares and triangles) or no EBK states, because both corners (the thin squares and triangles) are in
the wrong region. The EBK Maslov index is (3, 0) in region R (where J\=2I\) and (4, 2) in region O.
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Fig. 10. Comparison of the exact states (circles) to the semiclassical states (intersections of the lines
f ?y

1 =0 and f ?x , ?y
2 =0 with the same corresponding parities). The dashed line is the energy surface

E=200. J\ and J, are measured in units of �.

Fig. 11. The relative error of semiclassical energy eigenvalue (circles) and } eigenvalue (pluses)
plotted versus }. The obvious patterns result from series of states with the indicated quantum numbers.
The arrows point into the direction of increasing quantum number.
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TABLE III

The Quantum Mechanical Eigenvalues (Eqm , }2
qm) and the

Semiclassical Eigenvalues (Esc , }2
sc) of the Billiard in the

Ellipse for a=0.7 with Eqm<26 or 100<Eqm<1030

Eqm }2
qm Esc }2

sc r l ?x ?y

4.26746 0.18714 3.99539 0.21120 0 0 + +
9.05834 0.37981 8.65488 0.39821 0 0 & +
12.5768 0.12960 12.3295 0.13666 0 0 + &
15.9933 0.45667 15.5268 0.46827 0 1 + +
19.3576 0.30380 18.9734 0.31216 0 0 & &
25.0613 0.49625 24.7502 0.49755 0 1 & +
25.8947 0.09212 25.6683 0.09516 1 0 + +

b
1000.46 0.13551 1000.21 0.13560 8 2 + &
1001.65 0.65621 1000.78 0.65650 1 13 & &
1001.65 0.65621 1000.78 0.65650 1 14 + +
1002.01 0.43314 1001.40 0.43342 5 8 + +
1008.07 0.19149 1007.80 0.19159 8 3 + +
1010.97 0.36819 1010.52 0.36838 6 6 & +
1013.91 0.48076 1012.72 0.48148 4 9 & +
1018.48 0.24440 1018.17 0.24451 7 4 + &
1029.35 0.78842 1026.76 0.78970 0 16 + &
1029.35 0.78842 1026.76 0.78970 0 16 & +

(r, l+1)++ , (r, l )&& (e.g., Table III, rows 9, 10) and (r, l )+& , (r, l )&+ (e.g. rows
16 and 17) are almost degenerate. This corresponds to the degeneration of clock-
wise and counterclockwise rotations in the planar circular billiard. The EBK states
form regular lattices, with mesh size 2J\=2� and 2J,=� with two states on each
corner in region R and 2J\=2J,=� in region O. Far away from the separatrix the
uniform semiclassical states lie near the EBK states with Maslov index (3, 0) for
type R and (4, 2) for type O. Approaching the separatrix a transition between the
two regular EBK lattices takes place. Crossing the separatrix from region R to
region O the shift of the EBK states is $J\=&��2 and $J,=��2 for ?y=+1 and
$J\=��2 and $J,=&��2 for ?y=&1. The uniform quantization smoothly joins
the EBK lattices along the separatrix. It is natural to interpret the location of the
semiclassical states as two separate meshes: one for ?y=+1 and one for ?y=&1,
indicated by full and dotted lines in Fig. 10.

Figure 9c shows that close to the separatrix not only the accuracy of the EBK
states is unsatisfactory but also that EBK quantization sometimes yields a wrong
number of states. In Fig. 9c the situation for the (0, 1)-quantum cell is shown. The
EBK states are marked by bold squares in region R and by bold triangles in region O.
A square represents two EBK states because of the degeneracy in region R. The +&
parity box contains one EBK state, marked by the bold triangle. The opposite corner
of this parity box could be reached with the Maslov index defined for region R.
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However, it is located on the wrong side of the separatrix, and therefore not a true
EBK state indicated by a thin square. By the same reasoning the parity boxes ++
and &+ contain no true EBK state. On the contrary the && parity box contains
two true EBK states. This indicates the main deficiency of EBK quantization for
systems that exhibit a separatrix.

5. THE BERRY�TABOR TRACE FORMULA

In the last section we have seen how the imaginary complex orbits lead to a
Maslov index smoothly varying across the separatrix. The real complex orbits can
be taken into account by a completely different approach introduced by Berry and
Tabor [17]. The goal of this section is to incorporate the imaginary complex orbits
into the Berry�Tabor trace formula, such that all kinds of classically forbidden tori
are taken into account.

Starting from EBK quantization Berry and Tabor derived a formula for the
semiclassical density of states

nsc(E)=:
n

$ \E&H \\n+
:

4+ �++ (32)

in terms of resonant tori for an integrable system with f degrees of freedom. They
transformed Eq. (32) via the Poisson summation formula and performed the
integrals in stationary-phase approximation. The result is

nsc(E)=n� (E )+
2

�( f +1)�2
:
+

1

||(I +)| |+| ( f &1)�2
- |C(I +)|

_ :
�

q=1
_cos \q \S(I +)��&

?
2

:+++
?
4

;+&<q( f &1)�2. (33)

The first summation is over all relatively prime nonnegative integers +, i.e. over
families of prime orbits, while the second summation runs over all their repetitions.
The Maslov indices are always the same since the energy surface is assumed to have
no separatrix. The term +=0 is excluded from the sum and denoted by n� (E ); it
gives the mean density of states, the so-called Thomas�Fermi term. For the elliptic
billiard we have n� (E )=Ab �(2?�2) according to Weyl 's law, where Ab=? - 1&a2

gives the billiard's area. In [21] it is shown that next order correction to Weyl's
law, proportional to the circumference of the billiard, is contained in the whispering
gallery orbits in the remaining sum.

To improve the convergence of the series (33) it is advantageous to introduce a
smoothed density of states nsc(E; #) by giving E a small imaginary part i#. Then a
$-peak changes into a Lorentz function with half width energy #. The semi-
classical formula for nsc(E; #) differs from formula (33) by a decay factor D=
exp(&#qT(I +)��) before the cosine term in the second summation.
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Berry and Tabor show that formula (33) can be improved by taking into account
resonant real complex tori. This removes unphysical discontinuities in the density
of states resulting from contributions of resonant tori which are suddenly classically
realized as E changes. For a system that scales with respect to the energy this can-
not occur, nevertheless the system parameter a can take over the role of the energy,
e.g. for the elliptic billiard all real complex orbits become realized for a � 1. Even
without a parameter these corrections are sensible because they improve the situa-
tion when the stationary phase approximation is bad because there is a stationary
point close to, but outside the range of integration. The resulting trace formula
incorporating real complex orbits for two degrees of freedom systems reads

nsc(E; #)=n� (E )+
2

�3�2
:
+

1

||(I +)| - |+| |C(I +)|

_ :
�

q=1

DA
cos(q(S(I +)��&(?�2) :+)+%)

- q

&
2

- 2? ;�
:
+

1

||(I +)| - |+| |C(I +)|

_ :
�

q=1

D \sin(q(S2 ��&(?�2) :+))

42 - q
&

sin(q(S1��&(?�2) :+))

41 - q +
+

1
?�

:
+

:
�

q=1

D \sin(q(S2 ��&(?�2) :2+))
q ||2 | +I$2

&
sin(q(S1��&(?�2) :1 +))

q ||1 | +I$1 + ,

(34)

where S1, 2 are the actions, :1, 2 are the Maslov indices, and I$1, 2 are the normalized
derivatives with respect to a second constant of motion !, which parametrizes the
energy surface in action space. All quantities with indices 1, 2 are evaluated at
the boundaries !1 and !2 of the energy surface. A is the amplitude and % is
the argument of the complex Fresnel integral

F=
1

- 2? |
42�- �

41 �- �

dx ei( ;�2) x2
, (35)

where 41, 2 # R are defined by 42
1, 2=2q�;(S1, 2&S) and 41, 2

>
<0 if !1, 2

>
< ! +, where

I +=I(! +). The series (34) holds for real and real complex tori.
Formulas (33) and (34) can be applied to simple systems [17, 32] but not to

systems with separatrices like the elliptic billiard. In the derivation of Berry and
Tabor the energy surface is assumed to be strictly convex or strictly concave and
to have a smooth curvature. This is not the case for a system with separatrices, e.g.
the elliptic billiard, as can be seen in Fig. 2. We are going to study three versions
of the Berry�Tabor trace formula with sucessive improvements concerning states
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close to the separatrix. A first approach, similar to [33], would be to divide the
energy surface into smooth patches and to consider (33) or (34) for each patch. We
call this the EBKBT quantization. The manifestation of the separatrix in the EBK
approximation as a discontinuous quantization condition is carried over to the
EBKBT quantization by the appearance of the wrong number of terms in the sum-
mation (33) or (34). In the WKBBT quantization we correct this deficiency by
taking the Maslov index in (32) as a uniform Maslov phase, smoothly varying across
the separatrix. However, the new term is considered constant in the stationary
phase approximation. This improves the results and still gives a sum over periodic
orbits. The best results are obtained if the Maslov phase is fully taken into account
in the stationary phase approximation, leading to summation over (in general)
nonperiodic orbits in a uniform WKBBT trace formula.

The resonant tori of an integrable two degrees of freedom system are charac-
terized by the winding number w(} +)=+,�+\. For a billiard system without poten-
tial w is independent of the energy. Thus we can obtain all resonant tori for one
reference energy. The actions, the frequencies, and the reciprocal curvature scale
with - E. Hence all these quantities must only be calculated for the reference
energy. For the elliptic billiard the winding number w is restricted to the interval
(0, 1). Thus for resonances up to a fixed order we have 0<+\�+max and
0<+,<+\ . For the summation over q, i.e. over the repetitions, we incorporate all
orbits with period qT less than a cutoff time Tc=(��#) ln (2�=) to guarantee that the
error in the second summation of formula (33) is smaller than =. In the following
we choose a=0.7, �=1, #=0.3, and ==10&8. Thus the cutoff time is Tcr63.7. For
numerical reasons it is not possible to approach the cusp of w (see Fig. 2b for w~ )
arbitrarily close. We can only include all resonant tori with |}2&a2|>10&14, i.e.
w~ <0.472 for type R and w~ <0.943 for type O. But the contribution of tori with
larger winding numbers are very small because of the divergence of the curvature
at }2=a2. Taking +max=250, we include 26,395 and neglect 2,026 resonant tori in
the summation. The remaining interval [0, 2 arccos(a)�?)r[0, 0.506) carries the
real complex tori (type Oc). Since for a=0.7 the real complex torus with w=1�2
has the predominant effect, we found it sufficient to consider resonant real complex
tori with }2�}2

min=&15, i.e. w(})�w(}min)=0.285. Resonant tori with }2<}2
min

give negligible constributions, even though the curvature is very small, due to the
destructive interference in the Fresnel integral (35). The number of incorporated
real complex tori is 4,205; 5,421 are left out.

In the EBKBT approach we set :=(3, 0) and ;=1 for the patch R and :=(4, 2)
and ;=&1 for patch O. On patch R the EBK states are exactly degenerate; thus
all the contributions are multiplied by 2. Since there are only real complex tori of
type Oc , in Eq. (34) for patch O we only consider terms corresponding to the
boundary !1 (}2=0) and no boundary terms for patch R. Fig. 12 presents the spec-
trum nsc(E; #) calculated with the EBKBT quantization in the range 12.5�E�
47.5. For comparison the exact spectrum smoothed in a Lorentzian manner is
shown. We focus on the states shown in the quantum cell (0, 1) close to the
separatrix shown in Fig. 9. The other states in Fig. 12 are reproduced fairly well.
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First we observe that the (0, 1)+& state is also reproduced quite well, which is due
to the fact that the corresponding parity cell correctly contains one EBK state only.
The peak for the parity box (0, 1)++ splits into two peaks with approximately half
amplitude. The reason is that there is no true EBK state in this parity box.
However, the two corners of the box carry EBK states located in the wrong region
(the thin square and triangle in Fig. 9), and they still give a small contribution in
the trace formula. The situation is similar for the (0, 1)&+ state. Here the EBK
peak also splits into two small peaks; one accidently overlaps with the (1, 0)++

EBK state and the other one is seen as a small bump on the left side. In both cases
the EBKBT quantization almost fails to produce a state. The parity box (0, 1)&&

in Fig. 9 contains two EBK states. Since both of them are in the correct region (the
bold square and triangle) they both produce peaks with almost the usual
amplitude, which can be clearly seen by considering && parity only, i.e. by
looking at the billiard in the quarter of an ellipse. In Fig. 12 we instead observe that
the (0, 2)++ peak has almost doubled amplitude; this is the result of the assumed
degeneracy of states in the region R. So here the EBKBT quantization produces
one state too many. The corresponding peaks in the spectrum are called ``large
spurious peaks'' in [33].

To remove these problems, the tunneling through the potential barriers should be
incorporated by a summation over imaginary complex orbits. For one-degree-of-
freedom systems the consideration of tunneling orbits can be done in a simple way
[34, 35]. For systems with more degrees of freedom the problem is rather involved.
In particular a Green's function approach in terms of action angle variables is still

Fig. 12. Comparison of the exact quantum mechanical density of states (dotted line) to the
semiclassical density nsc(E; #) calculated from EBKBT quantization (solid line). The labels refer to the
exact peaks. EBKBT peaks connected to parity boxes with the wrong number of states (see Fig. 9) do
not give satisfactory results.
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out of reach, except for special systems [36]. Thus we again start with Eq. (32) as
Berry and Tabor did. At the heart of their approach are the EBK quantization con-
ditions of the form (1) which allow for a resummation of the semiclassical density
of states via Poisson summation. At this stage we allow for a varying : in Eq. (1);
i.e., we base our calculations on a uniform quantization condition. Note that this
uniformization is completely different from the uniformization of Berry and Tabor,
which involves only real complex tori. We incorporate both approaches, with the
result that all kinds of classically forbidden tori described in Section 2 are taken
into account.

An effective Maslov phase :~ (I� ; ?x , ?y) varying smoothly on the energy surface
can be extracted from Eqs. (27)�(30). Inserting the EBK quantization condition (1)
into these equations the quantum number n drops out because it appears as 2?n in
the argument of the trigonometric functions. Thus we obtain the effective Maslov
phases as

:~ \(I� ; ?x , ?y)=?y
2
?

arctan(e3\(I� \ , I� ,)��)+3&?y (36)

and

:~ ,(I� ; ?x , ?y)=?y
2
?

arctan(e3,(I� \ , I� ,)��)+2&?y &?x . (37)

Then we introduce new variables, behaving like continuous quantum numbers,

n~ =
1
�

I� &
1
4

:~ (I� ) (38)

for each parity. The energy surfaces in these variables (one for each parity), which
now depend on the energy through :~ , are shown in Fig. 14. The energy surfaces
with equal ?y have the same shape, but differ in a horizontal shift by the constant 1

2 .
For � � 0 :~ becomes a step function such that, except for a shift and the parity
splitting, the classical energy surfaces are reobtained in the semiclassical limit. The
quantization conditions for these variables read n~ # N2 and are trivial. In Section 4
we studied how the lattice of states changes across the separatrix, while the energy
surface was the same for all energies. Now we turn the point of view and introduce
new variables n~ giving a trivial lattice but a more complicated energy surface
instead. The lines of constant n~ \ , n~ , in the usual action variables are shown in
Fig. 10.

Since the quantization conditions in the new variables are of EBK type, we can
repeat the derivation of the trace formula by Berry and Tabor. The phase being
approximated in this derivation is +n~ . Without separatrix the only nonconstant part
in n~ is I� , and the stationary phase condition leads to resonant tori. In order to keep
the summation over resonant tori we must assume that :~ (I� ; ?x , ?y) varies slowly
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in action space, which is also the approach followed in [21]. This gives a trace
formula with two minor modifications: First, each sum is subdivided into separate
sums for each parity. Second, :~ now is different for every resonant torus. We call
this method semiuniform WKBBT quantization. Fig. 13 shows the semiuniform
WKBBT spectrum for the same parameters as above. The states (0, 1)++ and
(0, 1)&+ (parity cells without EBK state) are reconstructed in a satisfactory
manner. The (0, 1)&& state (parity cell with two EBK states) has improved, but
it still contains two contributions, which is due to the fact that we assume :~
to be constant in the stationary phase approximation, which is a particularly bad
assumption in the neighborhood of the separatrix.

Thus we are finally led to the necessity to fully take into account the variation
of :~ . In essence this means to take the surfaces in Fig. 14 as new energy surfaces,
and define all quantities (most notably the winding number) with respect to them.
Most important, the stationary points are now given by

+
�I�
�}2=

�

4
+

�:~
�}2=

3 $
cosh 3

(+,&+\). (39)

Although far away from the separatrix |3 | is large and this condition almost
reduces to the ordinary resonance condition; in general, Eqs. (33) and (34) are no
longer summations over resonant tori and consequently the resulting semiclassical
density of states is not determined by periodic orbits. Instead the tori to be taken

Fig. 13. Comparison of the exact quantum mechanical density of states (dotted line) to the semi-
classical density nsc(E; #) calculated with semiuniform WKBBT quantization (solid line). Semiuniform
WKBBT peaks corresponding to parity boxes with no EBK state at all ((0, 1)++ and (0, 1)&+) are
improved as compared to Fig. 12. The parity box (0, 1)&& with two EBK states still produces two
peaks.
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into account in the sum are given by the rational values of a new effective winding
number,

wn(E, })=&
�n~ \

�}2<�n~ ,

�}2 , (40)

such that the solutions of Eq. (39) are given by wn(E, })=+,�+\ . The overall
structure of the trace formula does not change; however, the frequencies and the
curvature have to be replaced by the respective expressions obtained from the
surface n~ (}). An important difference between the winding numbers w and wn is
that the latter depends on the energy. This leads to an enormous numerical effort
for the calculation of nsc(E; #), because it is necessary to determine the stationary
points for every energy separately. We call this method uniform WKBBT quantiza-
tion in contrast to the semiuniform WKBBT quantization, since the latter neglects
the varying :~ in the stationary phase approximation.

The uniform WKBBT spectrum calculated with the same parameters as above is
shown in Fig. 15. As expected the splitting of the (0, 1)&& state is now removed. In
the evaluation of the sum we define the boundaries of the energy surfaces as
n~ (}=0) and n~ (}=1). This choice is somewhat arbitrary since one could also define
the boundaries as n~ \=0 and n~ ,=0. But we want to focus on states close to the
separatrix where this arbitrariness is not relevant. The little peaks in Fig. 15 are
artefacts which could be removed by including larger + in the sum. The derivation
of the effective Maslov phase (36) and (37) makes it obvious that in the uniform
:~ the effects of tunneling and scattering orbits are incorporated into the
Berry�Tabor sum. Now we want to show that the consideration of an effective :~
is equivalent to an explicit incorporation of imaginary complex orbits with constant
Maslov indices.

Fig. 14. The energy surfaces in the variables n~ for the energies 25, 300, 1026.76. In contrast to
Fig. 10 here the shape of the energy surfaces depends on the energy but the semiclassical states form a
regular lattice. For the energy E=1026.76 the almost degeneracy of the semiclassical states (0, 16)+&

and (0, 16)&+ is shown.
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Fig. 15. Comparison of the semiuniform WKBBT density of states (dotted line) to the density
calculated with the uniform WKBBT quantization (solid line). The density obtained from the energy
eigenvalues calculated in Section 4 (dashed) gives the expected location of the peak, which is slightly dis-
placed from the peak in the exact quantum mechanical density (long dashed). The main point is that
the splitting of the (0, 1)�� peak is removed.

We consider two crossed double well potentials, which is slightly more general
than the elliptic billiard since the barrier penetration integrals 31 and 32 are then
unrelated. The effective :~ obtained by the method described in Section 4 can always
be written as :~ i=&2`i �?+:~ ci , with `i=arc tan exp(&3i) and :~ c=(:~ c1 , :~ c2) is a
constant integer vector. We rewrite the cosine term in Eq. (33) with x=
q(S��&(?�2) :~ c+)+(?�4); and qi=q+i>0 as the real part of

ei(x+q1 `1+q2`2)=eix(r1+it1)q1 (r2+it2)q2 (41)

with

ri=cos `i=
1

- 1+e&23i
, ti=sin `i=

1

- 1+e23i
. (42)

Now ri and ti can be interpreted as the absolute values of the reflection and trans-
mission coefficients of the potential barriers for one reflection or transmission (see
[37, 38]), respectively. Expanding the last term of Eq. (41) gives

eix :
q1

k1 , l1=1
k1+l1=q1

\q1

k1+ i l1rk1
1 tl1

1 :
q2

k2 , l2=1
k2+l2=q2

\q2

k2+ i l2rk2
2 t l2

2. (43)
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Finally we expand Eq. (43), take the real part, and find

:

k2+l2=q2

k1+l1=q1
\q1

k1+\
q2

k2+ cos \x+
?
2

l1+
?
2

l2+ rk1
1 t l1

1rk2
2 tl2

2. (44)

The phase in the cosine term in Eq. (44) can be interpreted as accumulation of
phase shifts of ?�2 resulting from single transmissions. Thus Eq. (44) tells us how
to extend the summation (33) to a summation over imaginary complex tori. One
must incorporate all combinations of real and imaginary complex orbits with the
same resulting period by replacing the cosine term in Eq. (33) by Eq. (44).

6. THE LENGTH SPECTRUM

Instead of calculating the density of states by a summation over resonant tori one
can turn the tables and look at the length spectrum, i.e. the Fourier transform of
the oscillating part of the density of states nosc(E )=n(E )&n� (E). In the context of
hyperbolic systems this viewpoint is referred to as inverse quantum chaology (see,
e.g., [19, 20]).

The familiar way to discover the appearance of periodic orbits in the quantum
mechanical spectrum is to calculate its power spectrum. Similar to the phases in the
Gutzwiller trace formula, the phases in the Berry�Tabor summation over resonant
tori are proportional to the action of periodic orbit representatives of the tori. The
action in a billiard scales with - E, such that we take the wavenumber k :=- 2E��
as the integration variable and determine | p(L)| 2 from

p(L) :=|
�

0
dk*(k) nosc(E(k)) exp(ikL) exp(&tk). (45)

Here the factor *(k)=�2k gives the measure with respect to the wavenumber. The
fading function exp(&tk) is introduced to reduce the significance of higher eigen-
values and it has been chosen in such a way as to make the analytical calculations
feasable. t has to be set appropriately in order to incorporate the finiteness of the
available energy range. Taking the exact eigenvalues up to Emax=100,000 (�=1)
calculated according to the method described in Section 3 one deals with nmax=
35,169 levels for the ellipse parameter a=1�- 2. Throughout this section we choose
a=1�- 2 for reasons that will become clear below. The condition to be imposed on
t is t>>ln 2�kmax with kmax=- 2Emax��. We found it adequate to set t=0.025.

Figure 16 shows | p(L)| 2 versus the length L. The tick marks above give the
lengths of periodic orbit representatives of resonant tori. The spectrum shows
equally spaced clusters of contributions. The small enclosed figure gives a
magnification of the range [4.0, 5.4] around the first cluster. Here the peaks
correspond to type R resonant tori, with winding number 1�+\ , the whispering
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gallery orbits. Their lengths accumulate in the length Lb of the sliding orbit along
the billiard boundary ob that can be considered as the +\ � � limit of these orbits.
The amplitudes of the contributions from these orbits decrease with the growing
number of reflections +\ , damped by (1++2

\)&1�2, the diverging curvature, and the
diverging frequency (see Eq. (33)). The other clusters in Fig. 16 lie around integer
multiples of Lb . Here multiple traversals of the whispering gallery orbits with
winding number 1�+\ and new ones with winding number 2�+\ , 3�+\ (coprime), etc.
accumulate. Contributions of type O tori occur only sparsely in the spectrum, as
compared to the type R tori. They have no accumulation orbit like the type R tori.
The shortest orbits lying on a type O resonant torus have length L=9.23 followed
by L=13.18 and L=14.67. This means that the low part of the spectrum is
dominated by type R tori and the clusters they produce. The whispering gallery
orbits lead to an infinite number of (families of ) periodic orbits with finite action,
thus violating the generic growth behavior of the number of periodic orbits in
integrable systems. In addition to resonant tori contributions Fig. 16 also shows
peaks at lengths corresponding to the unstable orbit ou and to the stable periodic
os and multiples thereof.

In the following we will have a closer look at the amplitudes corresponding to
isolated periodic orbits and to the amplitudes of the low resonant tori. For this
purpose we consider the real part, i.e. the cosine transform, of p(L) because it
reveals much more information than the absolute value. Richens showed in [18]
that as a limiting case the uniform version of the Berry�Tabor summation contains

Fig. 16. Power spectrum | p(L)| 2 for a=1�- 2. The smaller figure shows a magnification of the
range [4.0, 5.4] enclosed by the arrows. The tick marks above mark resonant tori; the tick marks and
labels below mark isolated periodic orbits.
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contributions of stable isolated periodic orbits equal to the corresponding terms in
Gutzwiller's trace formula [36]. He also suggests that the unstable isolated orbits
should appear in a similar way, which is rigorously shown for the ellipse billiard in
[21]. Thus the q th traversal of os and ou contribute

T(E )

?� - |det(Mq&1)|
cos \q

S(E)

�
&+q

?

2+ (46)

to the density of states. Here T(E ) is the period, S(E ) is the action of the periodic
orbit, M is the reduced 2_2 monodromy matrix describing its stability, and +q

is the Morse index of its q th traversal. For the calculation of Morse indices see,
e.g., [39]. Since for the stable orbit we have +q=4q+1+2[qw], where [ ] denotes
the integer part, it is not immediately possible to factor out q. For os and ou

tr M=2&4L(}1+}2)+4}1}2L2 , where L is the flight length between two con-
secutive reflections and }1 and }2 are the curvatures at the reflection points with a
positive sign in case of a convex billiard boundary [40]. For os we find L=Ls�2
and }1=}2=- 1&a2, while for ou the trace is always larger than 2 because
L=Lu�2=2 and }1=}2=(1&a2)&1. The winding number w # [0, 1) for os and
the stability exponent u for ou are given by

exp(\i2?w)
exp(\u)= :=

1
2

[\- (tr M)2&4+tr M], (47)

where the corresponding matrix M has to be inserted The winding number w
obtained from the eigenvalues of the monodromy matrix M is the same as in
Eq. (9). Now we can write the stability term in (46) as - |det(Mq&1)|=
2 |sin(q?w)| or 2 sinh(qu�2), respectively. Matching the signs of the two sine
functions for os one can rewrite (46) as

T(E )
2?�

sin(qS��)
sin(q?w)

for os , elliptic,

(48)
T(E )
2?�

cos(q(S��&+u ?�2))
sinh(qu�2)

for ou , hyperbolic,

where +q=q+u has been used for ou , with +u=4+2. It is important to notice that
the amplitudes of the contributions of isolated periodic orbits and of resonant tori
differ in the power of �, the former is proportional to 1��, the latter to 1��3�2.

A problem arises when the winding number w becomes rational, leading to a
divergent amplitude for the contribution of the corresponding number of traversals
where neighboring trajectories of os are closed in phase space. In order to study this
phenomenon we take a=1�- 2 in this section, slightly different from a=0.7 as
before. Then the winding ratio for the stable orbit Eq. (47) becomes w=1�2.
As worked out by Richens, in this case the thin resonant torus surrounding the
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periodic orbit rather than the periodic orbit alone determines the contribution to
the density of states. Equation (46) then has to be replaced by

1

�3�2

T(E)

2?(1+w2)3�4
- |C(E )|

cos(q(S(E )��&?w&(?�2) :\)+(?�4) ;)

- q
. (49)

The amplitude is again proportional to 1��3�2 signaling a torus contribution.
Inserting the semiclassical results for nosc(E) into Eq. (45) and taking the real

part we obtain

|
�

0
dk *(k) nosc(E(k)) cos(kL) exp(&tk)r :

p.obj.

Ap.obj.(L), (50)

where the summation on the right-hand side runs over all ``periodic objects,'' i.e.,
resonant tori, isolated periodic orbits, and thin resonant tori, in cases where the
isolated stable periodic orbits become resonant. Taking the fixed EBK phases in
Eq. (33) all the different kinds of contributions Ap.obj. can be calculated analytically.
The scaling properties of the action variables in Eqs. (8) and (9), the amplitudes in
Eqs. (33), (46), and (49) allow for a scaling with respect to the wavenumber k.
Hence, the semiclassical results, together with (45), lead to a summation over
integrals of the form

A� (L) :=A |
�

0
dk cos \L� k+n

?
4+ cos(Lk) exp(&tk) k_ (51)

with n # Z, A, L� , L, t # R, t>0 and _=0, 1�2. Defining the functions

fcos(L) :=
1(_+1)

((L� &L)2+t2)(_+1)�2 cos \(_+1) arctan \L� &L
t ++

+
1(_+1)

((L� +L)2+t2)(_+1)�2 cos \(_+1) arctan \L� +L
t ++ (52)

and, similarly, fsin(L) by replacing cosine by sine in Eq. (52) the integrals for A� (L)
can be solved analytically [25] and are listed in Table IV. The classical quantities
I +, |, and C are understood to be calculated for E=1. Then the mapping of the
parameters is given by

v

(L� , A, n, _)=\2?q+I +,
2=

- |q+| ||| - |C |
, (&2q:++;) mod 8, 1�2+ (53)

for the resonant torus contributions. The degeneracy factor = is 2 for type R tori
and 1 for type O tori.
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TABLE IV

The Analytical Results for A� (L)

n A� (L) n A� (L)

0 Afsin(L) \4 &Afsin(L)

\1
A

- 2
( fsin(L) � fcos(L)) \5

A

- 2
(& fsin(L)\ fcos(L))

\2 � Afcos(L) \6 \Afcos(L)

\3
A

- 2
(& fsin(L) � fcos(L)) \7

A

- 2
( fsin(L)\ fcos(L))

v

(L� , A, n, _)=(qLs ,
Ls

2? - q (1+w2)3�4
- |C |

, (&4qw&2q:\+;) mod 8, 1�2+ (54)

for the thin resonant torus case where qw is an integer.

v

(L� , A, n, _)=\qLs ,
Ls

2? sin(q?w)
, &2, 0+ (55)

for the stable isolated periodic orbit case with qw not an integer.

v

(L� , A, n, _)=(qLu ,
Lu

2? sinh(qu�2)
, (&2q+u) mod 8, 0) (56)

for the unstable isolated periodic orbit case with positive trace.
The results obtained from these formulas are shown in Fig. 17. Here resonant tori

with winding number w=+,�+\ and +, , +\ # [1, ..., 50] are included as far as they
are realized in phase space. Fig. 17a again shows the clustering of the contributions
any time a multiple of the sliding orbit length Lb is met. In Figs. 17b, c, and d we
show magnifications of the ranges between the (q&1)th and q th multiple of Lb for
q=1, 2, 3. The small ticks are labeled by the length of the multiple traversals of ob,
os , and ou that can be found in that range. The large ticks labeled by numbers
above belong to a selection of resonant tori listed in Table V. The agreement
between the exact and semiclassical curve is remarkably good. It gets a little worse
when L becomes larger and the density of peaks grows. Then the sum gives an
enormous mixture where the distinction of the individual contributions becomes
more or less impossible. In Fig. 18 we show magnifications around some individual
periodic objects. The third row shows how the amplitude of the contribution of the
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Fig. 17. Comparison of the exact to the semiclassical result for R( p(L)) (a=1�- 2). The solid line
is the cosine transform of the exact nosc(E ); the dotted line marks the semiclassical curve. (b),(c) and (d)
give magnifications of the length ranges [2.5, 5.4], [5.4, 10.8], and [10.8, 16.2], respectively.

TABLE V

Data for the Periodic Orbit Representatives of Resonant Tori Marked in Fig. 17

(b) Type w q L (c) Type w q L (d) Type w q L

1 R 1�3 1 4.56 1 R 2�5 1 8.58 1 R 3�7 1 12.59

2 R 1�4 1 4.90 2 R 1�3 2 9.12 2 R 3�8 1 13.16

3 R 1�5 1 5.07 3 O 2�3 1 9.23 3 O 3�4 1 13.18

4 R 1�6 1 5.17 4 R 2�7 1 9.51 4 R 1�3 3 13.68

5 R 1�7 1 5.23 5 R 1�4 2 9.80 5 R 3�10 1 14.10

6 R 2�9 1 10.00 6 R 3�11 1 14.43

7 R 1�5 2 10.15 7 O 3�5 1 14.67

8 R 2�11 1 10.26 8 R 1�4 3 14.70

9 R 1�6 2 10.34 9 R 3�13 1 14.91

Note. w is the winding ratio, L the length and q the number of traversals.
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Fig. 18. Comparison of the exact (solid) and semiclassical (dotted) result for R( p(L)) in the
neighborhood of the following periodic objects (a)(i)�(iii) traversals of the type R torus with w=1�3;
(b)(i) and (ii) traversals of type O torus with w=2�3; (b)(iii) type O torus with w=3�5; (c) traversals
of the stable periodic orbit os and (c)(i)�(iii) traversals of the unstable periodic orbit ou . The width for
all pictures is 0.4, the heights are 140 or 20.

traversal of os alternates in magnitude. For any even number of traversals the con-
tribution is that of a thin torus and the amplitude is of the same order in magnitude
as the torus contributions in the first two rows. The remaining traversals contribute
as ordinary stable isolated periodic orbits. The fourth row shows the fast decrease
of amplitudes of the unstable periodic orbit ou with a growing number of traversals.
This feature is familiar from hyperbolic systems where all orbits are of this kind
and the exponential decay of amplitudes with orbit length justifies, e.g., the cycle
expansion of quantum mechanical as well as classical dynamical Zeta functions
(see, e.g., [41]).

We performed the same calculations for a=0.7, where os is close to resonant and
also for a=cos(?(- 5&1)�4), where w becomes equal to the golden mean; i.e., os

becomes as far away from resonant as possible. The results not represented here
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indicate that any time a q-fold traversal of os has neighboring trajectories that are
almost closed in phase space it is better to replace the stable orbit contribution
by a thin torus contribution. For a=0.7 this means we have a strong contribution
for the first even traversal of the isolated stable periodic orbit which can be
viewed as a result of the real complex orbit corresponding to w=1�2. For
a=cos(?(- 5&1)�4) this is the case for q=3, 5, 8, ..., the denominators of
the continued fraction approximations 2�3, 3�5, 5�8, ... for the golden mean.

The version of Berry�Tabor formula in Eq. (34) gives a uniform expression that
is valid for all winding numbers of stable isolated periodic orbits. In the non-
rational case the contributions to the inverse spectrum can no longer be calculated
analytically. In [21] the inverse spectrum was calculated numerically. We restricted
ourselves to a resonant case in order to be able to obtain analytical results.

7. CONCLUSIONS AND OUTLOOK

From the classical point of view the billiard in the ellipse is a typical integrable
system: the frequencies change from one torus to another and there exist both,
stable and unstable, isolated periodic orbits, the latter leading to a separatrix on the
energy surface. Extending the classical mechanics to the complex plane, we intro-
duced three kinds of complex orbits: (i) tunneling orbits and (ii) scattering orbits,
both with imaginary action (``imaginary complex orbit''), and (iii) orbits with
complex turning points, complex momentum, and real action (``real complex
orbits''). The classification of these orbits in terms of the position of the turning
points and their connection by a Stokes or anti-Stokes line applies to all separable
systems. The action of these orbits appears naturally in the semiclassical treatment
of these systems.

The separation of the Schro� dinger equation leads to special cases of the
spheroidal wave equation corresponding to ``spin'' \1

2 . With a simple transforma-
tion the two coupled boundary value problems can be turned into a form suitable
for the application of a standard shooting method in order to efficiently calculate
the eigenvalues. The two discrete spatial symmetries of the ellipse lead to the
distinction of four parities, while the time reversal symmetry leads to an asymptotic
degeneracy of tori involving a rotational degree of freedom. As expected from the
WKB approximation the wave functions are concentrated on the projection of the
classical torus onto configuration space. The isolated unstable periodic orbit
induces a less pronounced ``scar'' for states close to the separatrix. Additionally,
these wave functions strongly localize at the focus points of the ellipse. An explana-
tion of this behavior is under investigation.

The eigenvalue spectrum can best be understood when transformed to the
classical action space, where eigenstates are located either on simple EBK lattices
far away from the separatrix or in a more complicated transition regime close to the
separatrix. In order to semiclassically describe the transition between the EBK
lattices in the vicinity of the separatrix we employed a uniform quantization
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scheme, which smoothes the discontinuity of the Maslov indices at the separatrix.
The imaginary complex orbits are used in this context to define a smooth Maslov
phase, replacing the discontinuous Maslov index. The semiclassical states are
obtained as the intersections of a set of lines in classical action space. Numerically
these states agree quite well with the exact results, even for low quantum numbers.
The relative error shows regular patterns, except for separatrix states, and it tends
to be large for states with at least one small quantum number and for states close
to the separatrix. A state with given quantum number is located inside a ``semi-
classical quantum cell'', and specifying its parity narrows its position down to a
``parity box'' of width ��2. This interpretation of the uniform quantization allows for
an illuminating picture of the situation for states close to the separatrix. Without
uniformization, parity boxes intersected by the separatrix may contain a wrong
number of EBK states.

The Berry�Tabor trace formula rests on EBK quantization. In the original
uniform version it contains contributions from real complex orbits, but imaginary
complex orbits are not incorporated. A treatment ignoring the separatrix produces
faulty peaks in the semiclassical density of states. They occur for states that belong
to parity boxes with the wrong number of EBK states. Incorporating the imaginary
complex orbit by a smoothly varying Maslov phase leads to a modified trace
formula. In the semiuniform WKBBT version these corrections are ignored in the
stationary phase approximation, resulting in a sum over resonant tori as in the
original version. This, however, cannot correct all the peaks from states belonging
to parity boxes with the wrong number of EBK states. In order to obtain satis-
factory peaks for these states the nonconstant Maslov phase fully has to be taken
into account. This leads to a uniform WKBBT trace formula quite similar to the
original one, with a changed effective energy surface now depending on the energy.
The effective resonant tori of this effective energy surface do not correspond to
periodic orbits of the billiard. With this sum over (in general) nonperiodic orbits
we were able to produce the correct peaks for all states. The numerical effort
increases considerably because the stationary points have to be found anew for
every energy. Even though the uniform WKBBT trace formula might not be a use-
ful tool for the practical calculation of eigenvalues, it can give some hints on how
to incorporate complex orbits into formulas of this type. It remains an open ques-
tion how a uniformization should come about in terms of a Green's function
derivation of the Berry�Tabor trace formula [42]. It is by no means obvious how
the variable Maslov phase should be emulated by, say, a summation over complex
orbits.

In the study of the length spectrum of our integrable system we focused on the
case where the stable orbit has a rational winding number. In this case the
divergent Gutzwiller term has to be replaced by a thin torus contribution obtained
by Richens. The four types of dominant contributions in the trace formula can be
analytically Fourier transformed, such that the inverse spectrum can be explicitly
written as a sum over periodic objects. We found a remarkably good agreement,
even though in this approach only the real complex tori are partially incorporated
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in the Richens term. It is an open question why the inverse spectrum is so much
less sensitive to the presence of the separatrix in our case.

Extensions of our work can be done in two directions. On the one hand, one can
take the elliptic billiard as a starting point for the penetration into the non-
integrable regime by a deformation of the billiard boundary. This is the content of
[21]. On the other hand, one can consider the three-dimensional billiards in the
ellipsoid [10, 43], starting with the cases of prolate and oblate spheroids. A first
step in this direction can be found in [44]. The Berry�Tabor trace formula for a
system with three degrees of freedom is much more involved, because the resonant
tori can no longer be labeled by a single rational winding number. Instead one has
to find a complicated set of resonances on the energy surface [43]. For these 3D
billiards, the exact quantum mechanical spectrum, its semiclassical quantum cells,
and its length spectrum are currently under investigation.
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