1,069 research outputs found

    An exact Riemann solver based solution for regular shock refraction

    Full text link
    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts and in the hydrodynamical case 3 signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin-Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer-Meshkov instability. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how addition of a perpendicular magnetic field increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave pattern transitions, in agreement with experiments, von Neumann shock refraction theory, and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the Richtmyer-Meshkov instability.Comment: 21 pages, 17 figures in 41 ps-files, accepted by J. Fluid Mec

    One-dimensional conduction in Charge-Density Wave nanowires

    Full text link
    We report a systematic study of the transport properties of coupled one-dimensional metallic chains as a function of the number of parallel chains. When the number of parallel chains is less than 2000, the transport properties show power-law behavior on temperature and voltage, characteristic for one-dimensional systems.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Toward detailed prominence seismology - I. Computing accurate 2.5D magnetohydrodynamic equilibria

    Full text link
    Context. Prominence seismology exploits our knowledge of the linear eigenoscillations for representative magnetohydro- dynamic models of filaments. To date, highly idealized models for prominences have been used, especially with respect to the overall magnetic configurations. Aims. We initiate a more systematic survey of filament wave modes, where we consider full multi-dimensional models with twisted magnetic fields representative of the surrounding magnetic flux rope. This requires the ability to compute accurate 2.5 dimensional magnetohydrodynamic equilibria that balance Lorentz forces, gravity, and pressure gradients, while containing density enhancements (static or in motion). Methods. The governing extended Grad-Shafranov equation is discussed, along with an analytic prediction for circular flux ropes for the Shafranov shift of the central magnetic axis due to gravity. Numerical equilibria are computed with a finite element-based code, demonstrating fourth order accuracy on an explicitly known, non-trivial test case. Results. The code is then used to construct more realistic prominence equilibria, for all three possible choices of a free flux-function. We quantify the influence of gravity, and generate cool condensations in hot cavities, as well as multi- layered prominences. Conclusions. The internal flux rope equilibria computed here have the prerequisite numerical accuracy to allow a yet more advanced analysis of the complete spectrum of linear magnetohydrodynamic perturbations, as will be demonstrated in the companion paper.Comment: Accepted by Astronomy & Astrophysics, 15 pages, 15 figure

    Toward detailed prominence seismology - II. Charting the continuous magnetohydrodynamic spectrum

    Full text link
    Starting from accurate MHD flux rope equilibria containing prominence condensations, we initiate a systematic survey of their linear eigenoscillations. To quantify the full spectrum of linear MHD eigenmodes, we require knowledge of all flux-surface localized modes, charting out the continuous parts of the MHD spectrum. We combine analytical and numerical findings for the continuous spectrum for realistic prominence configurations. The equations governing all eigenmodes for translationally symmetric, gravitating equilibria containing an axial shear flow, are analyzed, along with their flux-surface localized limit. The analysis is valid for general 2.5D equilibria, where either density, entropy, or temperature vary from one flux surface to another. We analyze the mode couplings caused by the poloidal variation in the flux rope equilibria, by performing a small gravity parameter expansion. We contrast the analytical results with continuous spectra obtained numerically. For equilibria where the density is a flux function, we show that continuum modes can be overstable, and we present the stability criterion for these convective continuum instabilities. Furthermore, for all equilibria, a four-mode coupling scheme between an Alfvenic mode of poloidal mode number m and three neighboring (m-1, m, m+1) slow modes is identified, occurring in the vicinity of rational flux surfaces. For realistically prominence equilibria, this coupling is shown to play an important role, from weak to stronger gravity parameter g values. The analytic predictions for small g are compared with numerical spectra, and progressive deviations for larger g are identified. The unstable continuum modes could be relevant for short-lived prominence configurations. The gaps created by poloidal mode coupling in the continuous spectrum need further analysis, as they form preferred frequency ranges for global eigenoscillations.Comment: Accepted by Astronmy & Astrophysics, 21 pages, 15 figure

    Extragalactic jets with helical magnetic fields: relativistic MHD simulations

    Full text link
    Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by mainly toroidal field, the high speed jets demonstrate only localized, strong toroidal field zones within the backflow vortical structures. We find evidence for a more poloidal, straight field layer, compressed between jet beam and backflows. This layer decreases the destabilizing influence of the backflow on the jet beam. In all cases, the jet beam contains rich cross-shock patterns, across which part of the kinetic energy gets transferred. For the high speed reference jet considered here, significant jet deceleration only occurs beyond distances exceeding O(100Rj){\cal O}(100 R_j), as the axial flow can reaccelerate downstream to the internal cross-shocks. This reacceleration is magnetically aided, due to field compression across the internal shocks which pinch the flow.Comment: 16 pages, Astronomy and Astrophysics accepted for publicatio

    Goal-directed and habitual decision making under stress in Gambling Disorder: an fMRI study

    Get PDF
    The development of addictive behaviors has been suggested to be related to a transition from goal-directed to habitual decision making. Stress is a factor known to prompt habitual behavior and to increase the risk for addiction and relapse. In the current study, we therefore used functional MRI to investigate the balance between goal-directed ‘model-based’ and habitual ‘model-free’ control systems and whether acute stress would differentially shift this balance in gambling disorder (GD) patients compared to healthy controls (HCs). Using a within-subject design, 22 patients with GD and 20 HCs underwent stress induction or a control condition before performing a multistep decision-making task during fMRI. Salivary cortisol levels showed that the stress induction was successful. Contrary to our hypothesis, GD patients showed intact goal-directed decision making, which remained similar to HCs after stress induction. Bayes factors provided substantial evidence against a difference between the groups or a group-by-stress interaction on the balance between model-based and model-free decision making. Similarly, neural estimates did not differ between groups and conditions. These results challenge the notion that GD is related to an increased reliance on habitual (or decreased goal-directed) control, even during stress
    • …
    corecore