153 research outputs found

    Anatomical Network Comparison of Human Upper and Lower, Newborn and Adult, and Normal and Abnormal Limbs, with Notes on Development, Pathology and Limb Serial Homology vs. Homoplasy

    Get PDF
    How do the various anatomical parts (modules) of the animal body evolve into very different integrated forms (integration) yet still function properly without decreasing the individual's survival? This long-standing question remains unanswered for multiple reasons, including lack of consensus about conceptual definitions and approaches, as well as a reasonable bias toward the study of hard tissues over soft tissues. A major difficulty concerns the non-trivial technical hurdles of addressing this problem, specifically the lack of quantitative tools to quantify and compare variation across multiple disparate anatomical parts and tissue types. In this paper we apply for the first time a powerful new quantitative tool, Anatomical Network Analysis (AnNA), to examine and compare in detail the musculoskeletal modularity and integration of normal and abnormal human upper and lower limbs. In contrast to other morphological methods, the strength of AnNA is that it allows efficient and direct empirical comparisons among body parts with even vastly different architectures (e.g. upper and lower limbs) and diverse or complex tissue composition (e.g. bones, cartilages and muscles), by quantifying the spatial organization of these parts-their topological patterns relative to each other-using tools borrowed from network theory. Our results reveal similarities between the skeletal networks of the normal newborn/adult upper limb vs. lower limb, with exception to the shoulder vs. pelvis. However, when muscles are included, the overall musculoskeletal network organization of the upper limb is strikingly different from that of the lower limb, particularly that of the more proximal structures of each limb. Importantly, the obtained data provide further evidence to be added to the vast amount of paleontological, gross anatomical, developmental, molecular and embryological data recently obtained that contradicts the long-standing dogma that the upper and lower limbs are serial homologues. In addition, the AnNA of the limbs of a trisomy 18 human fetus strongly supports Pere Alberch's ill-named "logic of monsters" hypothesis, and contradicts the commonly accepted idea that birth defects often lead to lower integration (i.e. more parcellation) of anatomical structures

    Expression of the Pupal Determinant broad during Metamorphic and Neotenic Development of the Strepsipteran Xenos vesparum Rossi

    Get PDF
    Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv′br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv′br expression throughout development, we detect elevated levels of total br expression and the Xv′Z1, Xv′Z3, and Xv′Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv′br expression in individual samples, we show that the levels of Xv′BTB and Xv′Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv′br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development. © 2014 Erezyilmaz et al

    The role of thyroid hormone nuclear receptors in the heart: evidence from pharmacological approaches

    Get PDF
    This review evaluates the hypothesis that the cardiac effects of amiodarone can be explained—at least partly—by the induction of a local ‘hypothyroid-like condition’ in the heart. Evidence supporting the hypothesis comprises the observation that amiodarone exerts an inhibitory effect on the binding of T3 to thyroid hormone receptors (TR) alpha-1 and beta-1 in vitro, and on the expression of particular T3-dependent genes in vivo. In the heart, amiodarone decreases heart rate and alpha myosin heavy chain expression (mediated via TR alpha-1), and increases sarcoplasmic reticulum calcium-activated ATPase and beta myosin heavy chain expression (mediated via TR beta-1). Recent data show a significant similarity in expression profiles of 8,435 genes in the heart of hypothyroid and amiodarone-treated animals, although similarities do not always exist in transcripts of ion channel genes. Induction of a hypothyroid cardiac phenotype by amiodarone may be advantageous by decreasing energy demands and increasing energy availability

    FXR agonism protects against liver injury in a rat model of intestinal failure-associated liver disease

    Get PDF
    Background: Intestinal failure-associated liver disease (IFALD) is a clinical challenge. The pathophysiology is multifactorial and remains poorly understood. Disturbed recirculation of bile salts, e.g. due to loss of bile via an enterocutaneous fistula, is considered a major contributing factor. We hypothesize that impaired signaling via the bile salt receptor FXR underlies the development of IFALD. The aim of this study was to investigate whether activation of FXR improves liver homeostasis during chronic loss of bile in rats. Methods: To study consequences of chronic loss of bile, rats underwent external biliary drainage (EBD) or sham surgery for seven days, and the prophylactic potential of the FXR agonist INT-747 was assessed. Results: EBD for 7 days resulted in liver test abnormalities and histological liver damage. Expression of the intestinal FXR target gene Fgf15 was undetectable after EBD, and this was accompanied by an anticipated increase in hepatic Cyp7a1 expression, indicating increased bile salt synthesis. Treatment with INT-747 improved serum biochemistry, reduced loss of bile fluid in drained rats and prevented development of drainage-associated histological liver injury. Conclusions: EBD results in extensive hepatobiliary injury and cholestasis. These data suggest that FXR activation might be a novel therapy in preventing liver dysfunction in patients with intestinal failure. Relevance for patients: This study demonstrates that chronic loss of bile causes liver injury in rats. Abrogated recycling of bile salts impairing of enterohepatic bile salt/FXR signaling underlies these pathological changes, as administration of FXR agonist INT747 prevents biliary drainage-induced liver damage. Pharmacological activation of FXR might be a therapeutic strategy to treat disorders accompanied by a perturbed enterohepatic circulation such as intestinal failure-associated liver diseas

    Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC)

    Get PDF
    The specific function of the epithelium as critical barrier between the intestinal lumen and the organism’s internal microenvironment is reflected by permanent maintenance of intercellular junctions and cellular polarity. The intestinal epithelial cells are responsible for absorption of nutritional components, facing mechanical stress and a changing oxygen supplementation via blood stream. Oxygen itself can regulate the barrier and the absorptive function of the epithelium. Therefore, we compared the dish cell culture, the transwell-like membrane culture and the oxygen enriched air–liquid interface (ALI) culture. We demonstrated strong influence of the different culture conditions on morphology and function of intestinal porcine epithelial cell lines in vitro. ALI culture resulted in a significant increase in cell number, epithelial cell layer thickness and expression as well as apical localisation of the microvilli-associated protein villin. Remarkable similarities regarding the morphological parameters were observed between ALI cultures and intestinal epithelial cells in vivo. Furthermore, the functional analysis of protein uptake and degradation by the epithelial cells demonstrated the necessity of sufficient oxygen supply as achieved in ALI cultures. Our study is the first report providing marked evidence that optimised oxygen supply using ALI cultures directly affects the morphological differentiation and functional properties of intestinal epithelial cells in vitro

    Impaired Carbohydrate Digestion and Transport and Mucosal Dysbiosis in the Intestines of Children with Autism and Gastrointestinal Disturbances

    Get PDF
    Gastrointestinal disturbances are commonly reported in children with autism, complicate clinical management, and may contribute to behavioral impairment. Reports of deficiencies in disaccharidase enzymatic activity and of beneficial responses to probiotic and dietary therapies led us to survey gene expression and the mucoepithelial microbiota in intestinal biopsies from children with autism and gastrointestinal disease and children with gastrointestinal disease alone. Ileal transcripts encoding disaccharidases and hexose transporters were deficient in children with autism, indicating impairment of the primary pathway for carbohydrate digestion and transport in enterocytes. Deficient expression of these enzymes and transporters was associated with expression of the intestinal transcription factor, CDX2. Metagenomic analysis of intestinal bacteria revealed compositional dysbiosis manifest as decreases in Bacteroidetes, increases in the ratio of Firmicutes to Bacteroidetes, and increases in Betaproteobacteria. Expression levels of disaccharidases and transporters were associated with the abundance of affected bacterial phylotypes. These results indicate a relationship between human intestinal gene expression and bacterial community structure and may provide insights into the pathophysiology of gastrointestinal disturbances in children with autism
    corecore