439 research outputs found

    Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells

    Get PDF
    Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication

    Endoparasitic insights of free-living fin (Balaenoptera physalus), Humpback (Megaptera novaeangliae) and North Atlantic Right Whales (Eubalaena glacialis) from Eastern Canadian Waters

    Get PDF
    Open Access funding enabled and organized by Projekt DEAL.Purpose: To date, little is still known on parasite infections affecting free-living large whale populations worldwide. Data presented should be considered as a baseline study for future monitoring surveys on endoparasites affecting whales, thereby enhancing investigations on impacts of zoonotic parasitoses not only on vulnerable or endangered baleen whale population health but also on public health. Methods: The presented study is a first report on gastrointestinal parasites infecting different free-living baleen whales inhabiting East Canadian waters using non-invasive methods. Individual faecal samples from fin (n = 3; Balaenoptera physalus), humpback (n = 4; Megaptera novaeangliae) and North Atlantic right whales (n = 1; Eubalaena glacialis) were collected without animal disturbance, within their natural habitats on an ecological expedition during annual surveys in summer 2017. Faecal samples were assessed by standardized diagnostic methods, such as sodium acetate acetic formalin (SAF) technique, carbol fuchsin-stained faecal smears, Giardia/Cryptosporidium coproantigen ELISAs and were applied for further identification. Results: Parasitological infections included three different potentially zoonotic parasite species, one protozoa (Entamoeba spp.) and two metazoans (Diphyllobothriidae gen. sp., Ascaridida indet.). No positive Giardia/Cryptosporidium coproantigen ELISA could be found in the studied whales. Conclusion: This study adds to the current knowledge of intestinal and zoonotic parasite infections of vulnerable to partly endangered free-ranging baleen whales. Only few or no parasitological studies exist for these whale species, usually dealing with only one dead specimen. We call for more research in this field especially for the importance of conservation of free-living marine mammals using non-invasive methods.Publisher PDFPeer reviewe

    The Rap Net: a geodetic positioning network for Andalusia (South Spain)

    Get PDF
    In this paper we present a description of the Andalusian Positioning Network, RAP: its objectives; design; development; its problems and its present status. This geodetic network consists of 22 permanent GPS stations whose surveying will provide the data required to obtain relative positions of any place in Andalusia after applying some post-processing techniques and real-time differential corrections. Thus, high-precision geodetic coordinates referred to the WGS-84 system will be provided for anywhere in Andalusia. The station in the network can broadcast a differential correction via internet. Nine stations can also broadcast the RTK corrections via radio. The network has been designed to cover Andalusia and to provide real-time differential corrections in the whole area. The RAP network is referred to the EUREF system and is the new reference frame in Andalusia for the Institute of Cartography of Andalusia’s new cartography. It will also be used to settle photogrametric points or marks for the georeferencing of satellite images; to establish control points for reference networks in civil engineering or GIS applications; for numerous scientific and technological applications, such as precise geoid determination and tropospheric, ionospheric, and climatological studies, among others. Its millimetric precision will ensure success when integrating new projects with other cartographies

    An easy synthetic way to exfoliate and stabilize MWCNTs in a thermoplastic pyrrole-containing matrix assisted by hydrogen bonds

    Get PDF
    This work focuses on the design of an engineered thermoplastic polymer containing pyrrole units in the main chain and hydroxyl pendant groups (A-PPy-OH), which help in achieving nanocomposites containing well-distributed, exfoliated and undamaged MWCNTs. The thermal annealing at 100 °C of the pristine nanocomposite promotes the redistribution of the nanotubes in terms of a percolative network, thus converting the insulating material in a conducting soft matrix (60 μΩ m). This network remains unaltered after cooling to r.t. and successive heating cycles up to 100 °C thanks to the effective stabilization of MWCNTs provided by the functional polymer matrix. Notably, the resistivity-temperature profile is very reproducible and with a negative temperature coefficient of -0.002 K-1, which suggests the potential application of the composite as a temperature sensor. Overall, the industrial scale by which A-PPy-OH can be produced offers a straightforward alternative for the scale-up production of suitable polymers to generate multifunctional nanocomposites

    Cross-linking of rubber in the presence of multi-functional cross-linking aids via thermoreversible Diels-Alder chemistry

    Get PDF
    Furan-functionalized polyketone (PK-FU) was added to a furan-functionalized ethylene-propylene rubber (EPM-FU). The mixture was subsequently cross-linked with a bismaleimide through Diels-Alder chemistry in order to improve the mechanical properties of the rubber. Infrared spectroscopy showed the reversible interaction between both polymers and the bismaleimide cross-linker. Likewise, mechanical measurements indicated the re-workability of the mixtures with no evident differences in storage modulus and mechanical properties after several heating cycles. The cross-link density and mechanical properties, such as hardness, tensile properties and compression set, could be modulated by changing the degree of furan functionalization of PK-FU and the PK-FU loading in the blends. It is concluded that PK-FU has some characteristics of an inert filler, but mainly acts as a multi-functional cross-linking aid, enabling larger amounts of bismaleimide to cross-link EPM-FU

    The Oesophageal Squamous Cell Carcinoma Cell Line COLO-680N Fails to Support Sustained Cryptosporidium parvum Proliferation

    Get PDF
    Cryptosporidium parvum is an important diarrhoea-associated protozoan, which is difficult to propagate in vitro. In 2017, a report described a continuous culture of C. parvum Moredun strain, in the oesophageal squamous cell carcinoma cell line COLO-680N, as an easy-to-use system for C. parvum propagation and continuous production of oocysts. Here, we report that—using the Köllitsch strain of C. parvum—even though COLO-680N cells, indeed, allowed parasite invasion and early asexual parasite replication, C. parvum proliferation decreased after the second day post infection. Considering recurring studies, reporting on successful production of newly generated Cryptosporidium oocysts in the past, and the subsequent replication failure by other research groups, the current data stand as a reminder of the importance of reproducibility of in vitro systems in cryptosporidiosis research. This is of special importance since it will only be possible to develop promising strategies to fight cryptosporidiosis and its ominous consequences for both human and animal health by a continuous and reliable methodological progress

    First Metabolic Insights into Ex Vivo Cryptosporidium parvum-Infected Bovine Small Intestinal Explants Studied under Physioxic Conditions

    Get PDF
    The apicomplexan Cryptosporidium parvum causes thousands of human deaths yearly. Since bovines represent the most important reservoir of C. parvum, the analysis of infected bovine small intestinal (BSI) explants cultured under physioxia offers a realistic model to study C. parvum–host cell–microbiome interactions. Here, C. parvum-infected BSI explants and primary bovine small intestinal epithelial cells were analysed for parasite development and metabolic reactions. Metabolic conversion rates in supernatants of BSI explants were measured after infection, documenting an immediate parasite-driven metabolic interference. Given that oxygen concentrations affect cellular metabolism, measurements were performed at both 5% O2 (physiological intestinal conditions) and 21% O2 (commonly used, hyperoxic lab conditions). Overall, analyses of C. parvum-infected BSI explants revealed a downregulation of conversion rates of key metabolites—such as glucose, lactate, pyruvate, alanine, and aspartate—at 3 hpi, followed by a rapid increase in the same conversion rates at 6 hpi. Moreover, PCA revealed physioxia as a driving factor of metabolic responses in C. parvum-infected BSI explants. Overall, the ex vivo model described here may allow scientists to address pending questions as to how host cell–microbiome alliances influence intestinal epithelial integrity and support the development of protective intestinal immune reactions against C. parvum infections in a realistic scenario under physioxic conditions

    A newly described strain of Eimeria arloingi (strain A) belongs to the phylogenetic group of ruminant-infecting pathogenic species, which replicate in host endothelial cells in vivo

    Get PDF
    Coccidiosis caused by Eimeria species is an important disease worldwide, particularly in ruminants and poultry. Eimeria infection can result in significant economic losses due to costs associated with treatment and slower growth rates, or even with mortality of heavily infected individuals. In goat production, a growing industry due to increasing demand for caprine products worldwide, coccidiosis is caused by several Eimeria species with E. arloingi and E. ninakohlyakimovae the most pathogenic. The aims of this study were genetic characterization of a newly isolated European E. arloingi strain (A) and determination of phylogenetic relationships with Eimeria species from other ruminants. Therefore, a DNA sequence of E. arloingi strain (A) containing 2290 consensus nucleotides (the majority of 18S rDNA, complete ITS-1 and 5.8S sequences, and the partial ITS-2) was amplified and phylogenetic relationship determined with the most similar sequences available on GenBank. The phylogenetic tree presented a branch constituted by bovine Eimeria species plus E. arloingi, and another one exclusively populated by ovine Eimeria species. Moreover, E. arloingi, E. bovis and E. zuernii, which all replicate in host intestinal endothelial cells of the lacteals, were found within the same cluster. This study gives new insights into the evolutionary phylogenetic relationships of this newly described caprine Eimeria strain and confirmed its close relationship to other highly pathogenic ruminant Eimeria species characterized by macromeront formation in host endothelial cells of the central lymph capillaries of the small intestine

    Fasciola hepatica soluble antigens (FhAg) induce ovine PMN innate immune reactions and NET formation in vitro and in vivo

    Get PDF
    [EN] Fasciola hepatica causes liver fluke disease, a worldwide neglected and re-emerging zoonotic disease, leading to hepatitis in humans and livestock. In the pathogenesis, flukes actively migrate through liver parenchyma provoking tissue damage. Here, parasites must confront leukocytes of the innate immune system in vivo. Polymorphonuclear neutrophils (PMN) are the most abundant granulocytes and first ones arriving at infection sites. PMN may display neutrophil extracellular traps (NETs), consisting of nuclear DNA, decorated with histones, enzymes, and antimicrobial peptides. We investigated for the first time whether F. hepatica soluble antigens (FhAg) can also trigger NETosis and innate immune reactions in exposed ovine PMN. Thus, isolated PMN were co-cultured with FhAg and NET formation was visualized by immunofluorescence and scanning electron microscopy analyses resulting in various phenotypes with spread NETs being the most detected in vitro. In line, NETs quantification via Picogreen®-fluorometric measurements revealed induction of anchored- and cell free NETs phenotypes. Live cell 3D-holotomographic microscopy revealed degranulation of stimulated PMN at 30 min exposure to FhAg. Functional PMN chemotaxis assays showed a significant increase of PMN migration (p = 0.010) and intracellular ROS production significantly increased throughout time (p = 0.028). Contrary, metabolic activities profiles of FhAg-exposed PMN did not significantly increase. Finally, in vivo histopathological analysis on F. hepatica-parasitized liver tissue sections of sheep showed multifocal infiltration of inflammatory cells within liver parenchyma, and further fluorescence microscopy analyses confirmed NETs formation in vivo. Overall, we hypothesized that NET-formation is a relevant host defence mechanism that might have a role in the pathogenesis of fasciolosis in vivo.SIOpen Access funding enabled and organized by Projekt DEAL. The study was funded by Agencia Nacional de Investigación y Desarrollo (ANID) Fondecyt Initiation 2020 number 11200103 entitled “Analysis ofFasciola hepatica-induced extracellular traps formation in sheep: implications of this innate immune reaction in the pathogenesis of liver fluke disease” held by TM

    Electrically Self-Healing Thermoset MWCNTs Composites Based on Diels-Alder and Hydrogen Bonds

    Get PDF
    In this work, we prepared electrically conductive self-healing nanocomposites. The material consists of multi-walled carbon nanotubes (MWCNT) that are dispersed into thermally reversible crosslinked polyketones. The reversible nature is based on both covalent (Diels-Alder) and non-covalent (hydrogen bonding) interactions. The design allowed for us to tune the thermomechanical properties of the system by changing the fractions of filler, and diene-dienophile and hydroxyl groups. The nanocomposites show up to 1 x 10(4) S/m electrical conductivity, reaching temperatures between 120 and 150 degrees C under 20-50 V. The self-healing effect, induced by electricity was qualitatively demonstrated as microcracks were repaired. As pointed out by electron microscopy, samples that were already healed by electricity showed a better dispersion of MWCNT within the polymer. These features point toward prolonging the service life of polymer nanocomposites, improving the product performance, making it effectively stronger and more reliable
    • …
    corecore