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a b s t r a c t

Furan-functionalized polyketone (PK-FU) was added to a furan-functionalized
ethylene-propylene rubber (EPM-FU). The mixture was subsequently cross-linked with a
bismaleimide through Diels-Alder chemistry in order to improve the mechanical properties
of the rubber. Infrared spectroscopy showed the reversible interaction between both
polymers and the bismaleimide cross-linker. Likewise, mechanical measurements
indicated the re-workability of the mixtures with no evident differences in storage
modulus and mechanical properties after several heating cycles. The cross-link density
and mechanical properties, such as hardness, tensile properties and compression set, could
be modulated by changing the degree of furan functionalization of PK-FU and the PK-FU
loading in the blends. It is concluded that PK-FU has some characteristics of an inert filler,
but mainly acts as a multi-functional cross-linking aid, enabling larger amounts of
bismaleimide to cross-link EPM-FU.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

EPM copolymers are synthetic elastomers that are obtained from the copolymerization of ethylene and propylene. EPDM
rubbers contain a third monomer, i.e. a non-conjugated diene (usually 5-ethylidene-2-norbornene or dicyclopentadiene),
introducing a small amount of pendant unsaturation for sulphur vulcanization. The saturated polymer backbone provides
EP(D)M rubbers with inherent resistance against degradation by heat, oxygen, ozone and light, especially where compared
to diene rubbers such as natural rubber and polybutadiene rubber [1,2]. EP(D)M rubber is used in a large variety of outdoor
and elevated-temperature applications, ranging from automotive to building and construction. Like other rubbers, EP(D)M
rubber is compounded with (reinforcing) fillers and plasticizers, and subsequently shaped and cross-linked. Cross-linking
is typically achieved via sulphur vulcanization or peroxide curing, resulting in an elastic, three-dimensional polymer net-
work that cannot be melted or reprocessed [2,3]. Simple mechanical grinding of waste rubber produces low quality feedstock
for virgin rubber [4]. Meanwhile, pyrolysis and incineration are downcycling methods that are still associated with environ-
mental issues. The irreversibility of the conventional cross-linking processes constitutes the major restraint in the recycling
of waste rubber. Devulcanization of sulphur-vulcanized rubber, i.e. the cleavage of carbon-sulphur or sulphur-sulphur cross-
links, has been widely studied [5–7] and is commercially practiced, but may cause a considerable amount of bond scission in
the polymer main chain [2,7], which is detrimental for the performance of the recyclate compared to the virgin material.
.
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In this context, the development of iononomers, thermoplastic elastomers (TPEs) and thermoplastic vulcanizates (TPVs)
[8,9] has represented a major advancement, since these products combine the processability of thermoplastics at relatively
high temperature with the elasticity of cross-linked rubbers at service temperature. The polymer backbone of TPEs, for
example (hydrogenated) styrene/butadiene/styrene [S(E)BS] triblock copolymers, consists of ‘‘hard” and ‘‘soft” segments,
which phase separate at low temperature, resulting in two phases with a high and a low glass transition temperature
(Tg), respectively [8,10]. Cross-linking in TPEs does not occur through chemical bonds, but because the hard domains
‘‘cross-link” the soft matrix. The hard domains soften at high temperature, i.e. the ‘‘cross-links are broken”, and the TPE
becomes melt processable [2]. The disadvantage of TPEs resides in their poor high-temperature performance, since this is
factually limited by the Tg of the hard segments (e.g. around 80 �C for S(E)BS [11]).

An alternative approach for the recycling of thermoset cross-linked polymers is thermoreversible cross-linking. In
particular, the Diels-Alder (DA) reaction has gained major interest for this purpose, because of the relatively fast kinetics
and the mild conditions for (de)cross-linking without the need of a catalyst [12–15]. DA cross-linking proceeds via the
cycloaddition of a diene to a dienophile, typically a furan and a maleimide, at relatively low temperature (e.g. 50 �C)
[16–19]. De-cross-linking via the retro DA reaction is favored at high temperature (typically above 100 �C), thus allowing
the material to be reshaped or recycled. In a previous study a commercial, maleated EPM (EPM-MA) was grafted with
furfurylamine (FFA), yielding EPM-FU, which was then cross-linked with a bismaleimide (BM) via the DA reaction
(Scheme 1I) [20]. The resulting product showed mechanical properties similar to those of a conventionally peroxide-
cured EPDM rubber with a comparable cross-link density and possessed the added value of recyclability. It was possible
to recycle the material via compression molding with excellent conservation of properties.

Alternating, aliphatic polyketones (PK), obtained by copolymerization of carbon monoxide with ethylene and/or
propylene, can be modified with FFA to introduce furan groups [21]. The resulting furan-functionalized polyketones
(PK-FU) can be thermoreversibly cross-linked with BM (Scheme 1II) [22]. Such products can be recycled up to 10 times with
hardly any change in performance [21]. The mechanical properties can be modulated by varying the degree of furan
functionalization and the furan/maleimide molar ratio [23]. The high brittleness and low impact strength of the PK-FU
thermoset were overcome by the addition of a small amount of EPM-FU elastomer as a toughening-agent [24]. Upon the
addition of BM, the thermoreversible reaction within and between the phase-separated EPM-FU and PK-FU in the blends
(Scheme 1III) was shown to significantly increase the impact strength [24]. Since PK is easily functionalized with controlled
conversion of furan and forms reversible thermosets when cross-linked with BM [33,35], the resulting blend of EPM-FU and
PK-FU is also fully recyclable.
Scheme 1. Grafting of furan groups onto maleated EPM rubber (I) and aliphatic polyketone (II) via reaction with furfurylamine and subsequent (de)cross-
linking of the EPM-FU/PK-FU blends via the (retro)Diels Alder reaction with 1,10-(methylene di-4,1-phenylene)bismaleimide (III).
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The relatively low amount of furan moieties along the EPM-FU backbone, factually limited by the chemical composition of
the rubber precursor used (only 2 wt% of MA can be grafted onto EPM [20,25,26]), prohibits a detailed study on the effects of
increasing the cross-link density and limits the mechanical properties of the cross-linked rubber. When elastomers are cured
with peroxides, multi-unsaturated chemicals are usually added as coagents to increase the cross-linking efficiency [27,28].
Typically, coagents such as trimethylolpropane trimethacrylate, triallyl (iso)cyanurate or m-phenylene bismaleimide are
used. It would be useful if similar coagents could be developed for the BM cross-linking of EPM-FU.

Another way of improving the elastic and mechanical properties of EPM-FU is by formulating the gum rubber. Gum rub-
bers are generally compounded with reinforcing fillers, such as carbon black or silica, to enhance their mechanical proper-
ties, especially their strength. Thermoset resins, typically phenolics, have been used as an alternative for or in combination
with reinforcing fillers. These resins have excellent compatibility with the rubber and, thus, lower the melt viscosity of the
rubber compound [29]. During the vulcanization stage, the phenolic resins are cured independently from the rubber, forming
an interpenetrating polymer network [30–32]. Depending on the structure of the phenolic resins, covalent bonds can be
formed between the two networks and, thus, phenolic resins can also be viewed as rigid cross-linking agents [33–38].

In this work, a reversed approach is applied, i.e. the mechanical properties of the DA cross-linked EPM-FU rubber are
improved by incorporating small amounts of PK-FU. The PK phase could act as a rigid, multi-functional coagent domain
in the EPM rubber matrix, thus factually increasing the cross-link density to industrially relevant levels (equal or above
10�4 mol/cm3), or as a cross-linked filler. The DA cross-linking reaction of EPM-FU with BM is slow compared to conventional
cross-linking methods, such as sulphur vulcanization. The use of highly functionalized PK-FU as a multifunctional cross-
linking aid may render the reaction faster. Finally, PK can be functionalized with different amounts of furan groups, allowing
for a new way of tuning the cross-link density and, thus, the material properties of the thermoreversibly cross-linked EPM
rubber.

The goal of this work is to blend EPM-FU and PK-FU, thermoreversibly cross-link the mixture with BM, while using PK-FU
as a multifunctional aid in a way of improving the mechanical properties of EPM-FU.

2. Experimental

2.1. Materials

Polyketone, i.e. an alternating polymer of carbon monoxide with ethylene or propylene (PK; CO, ethylene and propylene:
50, 30 and 20 mol%, respectively, Mn = 2800 g/mol and PDI = 1.7) was synthesized according to a reported procedure [8,39].
Maleated EPM (EPM-MA; Keltan DE5005 with 49 wt% ethylene, 2.1 wt% MA, Mn = 50 kg/mol and PDI = 2.0) was kindly pro-
vided by ARLANXEO Netherlands B.V. Furfurylamine (FFA, Sigma-Aldrich, P99%) was freshly distilled before use. Tetrahy-
drofuran (THF, >99.9%), acetone (>99.5%), decalin (98%), butylamine (99%) and 1,10-(methylenedi-4,1-phenylene)
bismaleimide (BM, >95%) were purchased from Sigma-Aldrich and used as received. Deuterated dimethylsulfoxide
(DMSO-d6, Sigma Aldrich, P99.9% deuteration) was used as solvent for 1H NMR measurements.

2.2. Furan modification of polyketone

Chemical modification of PK was performed via the Paal-Knorr reaction, using different molar ratios between the 1,4-
dicarbonyl units of PK and the amines, e.g. furfurylamine or butylamine. The latter was used as a reference, which does react
with PK, but the resulting modified PK (PK-BU) does not react with BM and only acts as a non-reactive filler. The reactions
were performed in bulk in a 250 mL round-bottom glass reactor, equipped with a reflux condenser, a U-type anchor impeller,
and an oil bath for heating. After pre-heating 60 g of PK up to 110 �C, the amine was added dropwise during 20 min. The total
reaction time was 4 h at 110 �C with a stirring speed of 600 rpm. The resulting viscous product was frozen with liquid nitro-
gen, crushed to powder and washed three times with de-ionized Milli-Q water to remove any unreacted amine. After filtra-
tion and freeze drying, a light-brown powder was obtained as final product. The samples in Table 1 are coded indicating the
type of amine (FU for furfurylamine and BU for butylamine) and the desired carbonyl conversion (XCO = 40, 60 or 80%). The
obtained carbonyl conversion (XCO in %) of PK was calculated using Eq. (1).
Table 1
Modific

Sam

PK-B
PK-F
PK-F
PK-F
XCO ¼
2 %N

MN
%C
MC

�%N
MN

�nCy
nCx

þ 2 %N
MN

� 100 ð1Þ
ation of polyketone (60 g).

ple Amine (g) Amine (mmol) XCO (%) Xamine (%)

U80 26.7 365 78 98
U40 17.7 182 39 99
U60 26.6 274 58 98
U80 35.4 365 76 96
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with %N and %C, respectively the weight of nitrogen and carbon per 100 g of final product as determined by elemental anal-
ysis,MN andMC the atomic weights of nitrogen and carbon, respectively (14.01 and 12.01 g/mol respectively), nC

x the average
number of carbons in the original monomer, which is (0.3 � 3) + (0.7 � 4) = 3.7 and nC

y the average number of carbons in two
neighboring modified monomers containing one pyrrole (Scheme 1), which is (0.3 � 0.3 � 6) + (0.7 � 0.7 � 8) + (2 � 0.3 � 0.7 � 7)
+ 5 = 12.4 [20]. The amine conversion (Xamine in %) was calculated from the moles of amine (furfurylamine or butylamine) in
the feed (molamine) using Eq. (2).
Table 2
Experim

Sam

EPM
5PK-
5PK-
5PK-
5PK-
10PK
10PK
10PK
10PK
Xamine ¼
%N
MN

Mamine
� 100: ð2Þ
2.3. Furan functionalization of EPM-MA rubber

EPM-MA was dried in a vacuum oven for one hour at 175 �C to convert any di-acid present into cyclic anhydride [20].
100.0 g of dried EPM-MA (21.4 mmol MA) was dissolved in THF (10 wt% polymer) by stirring for 24 h at room temperature.
6.24 g FFA (64.3 mmol) was added to the solution. The reaction mixture was stirred in a closed system for 12 h at room tem-
perature and then slowly dropped into 5 L of acetone under mechanical stirring. The modified rubber (EPM-FU), precipitated
as yellowish strands, was filtered and dried in an oven at 50 �C up to constant weight. Finally, the intermediate amide-acid
was compression molded for 15 min at 175 �C and 100 bar to ensure the complete conversion to succinimide. The conversion
(XMA in %) of anhydride into imide groups was calculated from FT-IR (Eq. (3))
XMA ¼ 1� AFU
1856=A

FU
723

AMA
1856=A

MA
723

 !
� 100; ð3Þ
where AFU
1856 and AMA

1856 are the area integrals of the absorption bands at 1856 cm�1 (C@O asymmetric stretching of anhydride

ring) for EPM-FU and EPM-MA, respectively, and AFU
723 and AMA

723 are the respective integrals of the bands at 723 cm�1 (methyl
rocking), which are used as internal references [20].

2.4. Blend preparation and cross-linking via Diels-Alder addition

Blends were prepared by dissolving EPM-FU and the modified polyketones (PK-FU or PK-BU80), together at different
weight ratios (95/5 or 90/10 EPM/PK, Table 2) in 50 mL THF at room temperature. BM was added to the mixture in a stoi-
chiometric amount (1:1 M ratio between maleimide and total furan groups of both polymers). The molar ratio of these furan
units in the EPM-FU and PK-FU parts of these blends is close to unity, i.e. it ranges from 0.5 (for 10PK-FU80) to 2.0 (for 5PK-
FU40). The reaction mixtures were stirred for 24 h and the solvent was evaporated at 50 �C. All samples were compression
molded into homogeneous samples for 40 min at 150 �C under a pressure of 100 bar and thermally annealed for 24 h at 50 �C
for subsequent mechanical testing. ‘‘Reprocessed” sample bars were prepared by cutting or grinding these bars into small
pieces (±50 mm3) and compression molding these pieces into new, coherent samples similar to the original bars.

2.5. Characterization

FT-IR spectra were obtained using a Perkin-Elmer Spectrum 2000 in transmission mode or in Attenuated Total Reflection
(ATR) mode with a diamond crystal. Samples for transmission FT-IR measurements were compression molded into 0.1 mm
thick films for 30 min at 150 �C and 100 bar and measured in a KBr tablet holder. Ground samples and powders were mea-
sured using the ATR setup of Greasby Specac. Measurements were performed over a spectral range from 4000 to 600 cm�1 at
a resolution of 4 cm�1, averaging 32 scans. Deconvolution was used to integrate the areas related to the anhydride peak at
1856 cm�1 and the reference peak at 723 cm�1. Elemental analysis was performed with an EuroVector EA. 1H NMR spectra
were recorded on a Varian Mercury Plus 400 MHz spectrometer using DMSO-d6 as solvent. The apparent cross-link density
ental formulations of EPM-FU/(modified PK) blends with stoichiometric amounts of BM cross-linker.

ple EPM-FU (g) PK-FU or – BU (g) EPM/PK (w/w) BM (mg)

-FU 4.20 0.00 100/0 164
BU80 4.00 0.21 95/5 153
FU40 3.97 0.21 95/5 248
FU60 3.97 0.21 95/5 287
FU80 4.00 0.21 95/5 322
-BU80 3.99 0.44 90/10 147
-FU40 3.91 0.45 90/10 362
-FU60 3.98 0.45 90/10 438
-FU80 4.00 0.44 90/10 509
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was assessed via equilibrium swelling tests in decalin at room temperature. About 500 mg of dried, cross-linked sample was
immersed in 15 mL decalin for 72 h in order to reach the equilibrium swelling. The sample was weighed after removing the
decalin wetting the surface (W1) and was then dried in a vacuum oven at 80 �C until a constant weight was reached (W2).
The weights of the swollen and dried samples were used to calculate the apparent cross-link density using the Flory-Rehner
equation (Eq. (4)) [40].
lnð1� VRÞ þ VR þ vV2
R

2VSð0:5VR � V1=3
R Þ

with VR ¼ W2

W2 þ ðW1 �W2Þ � qsample

qdecalin

ð4Þ
with qsample the density of the blend (0.86 g/cm3 on average as the majority of each blend consists of EPM), qdecalin and VS the
density and the molar volume of the decalin solvent, respectively (0.896 g/cm3 and 154.3 cm3/mol, respectively), and v is the
Flory-Huggins interaction parameter (0.121 + 0.278VR for EPDM in decalin [28]). It is noted that the Flory-Rehner equation is
only applicable for homogeneous rubber samples with difunctional cross-links, whereas the samples in this study are phase-
separated mixtures of EPM with PK. Therefore, with the modified PK partly acting as a multi-functional cross-linking aid, the
calculated values only represent apparent cross-link densities. Extraction experiments were performed by immersing small
pieces (<1 g) of sample in refluxing acetone for 72 h, filtration of the mixture and drying the residue for 24 h at 50 �C in a
vacuum oven.

Small-angle X-ray scattering (SAXS) measurements were performed on an advanced Nano-Star SAXS setup, a homemade
assembly of a NanoStar camera and a Microstar X-ray generator from Bruker AX-S. Optical microscopy was performed on a
Nikon Eclipse E600 and images were captured with a Coolpix camera with MDC lens. Differential Scanning Calorimetry (DSC)
was performed on a Perkin-Elmer DSC Pyris 1 under a nitrogen atmosphere. The samples for DSC were weighed (10–17 mg)
in an aluminum pan, which was then sealed. The sample was heated from �80 to 180 �C and then cooled to �80 �C using
heating and cooling rates of 10 �C/min. Four cycles were performed for each sample. Dynamic Mechanical Thermal Analysis
(DMTA) was performed using a Rheometric Scientific Solid Analyzer (RSA II) in fiber film mode. A clamp length of 23 mm, an
oscillation frequency of 1 Hz and a strain of 0.7% were applied. Samples were heated and cooled in cycles from 20 to 180 �C
and back with a heating and cooling rate of 0.05 �C/min. DMTA specimens were prepared by compression molding 500 mg of
product into 45 mm long, 5 mm wide and 1 mm thick rectangular bars. Similar samples were used for tensile tests, which
were performed on an Instron 5565 with a clamp length of 15 mm, according to the ASTM D4-112 standard. A strain rate
of 500 ± 50 mm/min was applied. For each measurement 10 samples were tested and the two outliers with the highest
and the lowest values were excluded. Data presented are averages of the other 8 tests. Hardness Shore A was measured using
a Bareiss Durometer, according to the ASTM D2240 standard. Test samples with a thickness of 2.0 ± 0.1 mm were prepared
by compression molding. Average values were obtained from 10 measurements. Compression set tests were performed for
70 h at room temperature on a homemade device, according to the ASTM D931 standard. Each measurement was performed
in duplo on cylindrical samples with a thickness of 6.0 ± 0.1 mm and a diameter of 13.0 ± 0.1 mm, which were prepared by
compression molding.

3. Results

3.1. Polymer modification

The modification of PK was performed via the Paal-Knorr reaction with FFA or butylamine at a temperature of 110 �C. The
reactions proceeded to nearly full conversion of the amine (Table 1: >96%) and, thus, the targeted carbonyl conversions are
almost reached, which is in agreement with previous results for this system [20–23]. A comparison of the 1H NMR spectra of
modified PK-FU and the original PK (Fig. 1A) clearly shows the occurrence of a broad peak at �5.7 ppm, which has been
assigned to the hydrogen atoms of the pyrrole ring in the PK-FU backbone. The peak at 4.9 ppm has been assigned to the
methylene group connecting the furan to the pyrrole, while the signals at 7.3, 6.2 and 5.9 ppm have been assigned to the
hydrogen atoms of the pending furan ring [21,23]. Fig. 1 only shows these relevant peaks, which clearly increase in intensity
with increasing furan concentration in the reaction mixture.

The modification of EPM-MA with FFA into EPM-FU was studied by transmission FT-IR (Fig. 1B). The most indicative
results for the conversion of the cyclic anhydride into the imide are the nearly complete disappearance of the C@O anhydride
asymmetric stretching band at 1856 cm�1 and the appearance of the C@O imide stretching and the CAN imide symmetric
stretching bands at 1710 cm�1 and 1378 cm�1, respectively [23,41]. The appearance of the symmetric CAOAC stretching
band at 1013 cm�1 and of the out-of-plane hydrogen bending band at 740 cm�1 clearly indicates the presence of furan
groups linked to EPM-FU [42]. The reaction conversion was calculated to be 99.9%, which is in line with the quantitative
modification achieved in our previous work [20].

3.2. Blend characterization

ATR infrared spectra of the EPM-FU/PK-FU blends with and without BM (Fig. 2), clearly show the appearance of the
CAOAC stretching band of the DA adduct at 1185 cm�1 and the disappearance of the symmetric CAOAC stretching band
at 1013 cm�1 and of the out-of-plane hydrogen bending band at 740 cm�1 of the furan rings. This unambiguously proves



EPM-MA
EPM-FU

A

PK-FU80

PK-FU60

PK-FU40

PK

B

Fig. 1. (A) 1H NMR spectra of unmodified polyketone (PK) and furan-modified polyketone with different degrees of carbonyl conversion (PK-FU40, PK-FU60
and PK-FU80) and (B) transmission FT-IR spectra of EPM-MA and the modified EPM-FU.

Fig. 2. ATR FT-IR spectra of a PK-FU/EPM-FU blend before and after cross-linking with BM.
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the formation of Diels–Alder adducts in the blends [21,23,43,44], whereas the CAN stretching band of the imide rings at
1378 cm�1 merely demonstrates the presence of BM [24]. Unfortunately, it is not clear from these spectra whether the
DA adducts are formed in the EPM-FU and the PK-FU phases and/or between them.

The occurrence of cross-linking of the PK phase of the blends was shown by extraction experiments in acetone. The cross-
linked PK-FU80 could not be extracted from the 5 and 10PK-FU80 samples, whereas all PK-BU was quantitatively extracted
from the 5 and 10PK-BU80 samples.

The large difference in polarity between the modified EPM and PK polymers (calculated solubility parameters are 16 (J/
cm3)0.5 for EPM-FU and 22–26 (J/cm3)0.5 for PK-FU, depending on the degree of furan functionalization [45]) suggests that
EPM-FU and PK-FU are not thermodynamically miscible. In the previous study [24] EPM was dispersed in PK and formed
phase-separated domains. In this study PK is the minor phase (5–10 wt%) and will form phase-separated domains dispersed
in the rubber matrix. PK domains are indeed visible with optical microscopy on the freshly cut surface of a compression
molded blend sample and seem to have a large variation in size (Fig. 3A). DSC scans of cross-linked EPM-FU/PK-FU blends
show the glass transition of EPM-FU at �60 �C (Fig. 3B). The Tg of the starting PK-FU, between 5 �C and 30 �C, depending on
the degree of furan functionalization [22], is increased to above 100 �C upon cross-linking with BM and is located just
beneath the retro-DA endothermic peak of the cross-linked sample, giving it an asymmetric shape. This implies that PK-
FU does indeed form rigid/hard domains in the soft EPM-FU matrix at room temperature. Finally, the inclined slopes of
the intensity of SAXS scans (not shown for brevity) at large length scale of both the cross-linked and non-cross-linked blends
also indicate that domains >100 nm are present [46].

Both the furan functionalization of PK-FU and the content of the modified PK-FU affect the apparent cross-link density of
the blends (Fig. 4A). It is noted again that the apparent cross-link densities shown in Fig. 4 are useful for relative comparisons
only. The blends containing PK-FU have higher cross-link densities than the neat EPM-FU rubber, indicating that PK-FU
indeed acts as a coagent for DA cross-linking with BM. For a given PK-FU product the apparent cross-link density
increases with the amount of PK-FU. At constant PK-FU content the cross-link density increases with the degree of



Fig. 3. (A) Optical micrograph of 10PK-FU60, displaying the phase-separation of 100 lm large PK domains (black spots) in the EPMmatrix and (B) DSC scan
of 10PK-FU60 displaying two separate Tg of EPM-FU and PK-FU.

Fig. 4. (A) Apparent cross-link density, determined via equilibrium swelling, for cross-linked blends of EPM-FU and modified PK as a function of modified
PK content and (B) as a function of the total BM content in the blend (PK-BU data not included). Error bars indicate ±1 standard deviation.
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furan-functionalization of PK (and corresponding equivalent of BM). Similar behavior has been reported for rubber-based
systems compounded with phenolic resins, either interpenetrating [30–32] or chemically bonded to the rubber matrix
[33–38]. PK-BU is not able to form any DA adduct and, indeed, the reference blends with PK-BU show the lowest apparent
cross-link densities, which are even lower than that of the neat EPM-FU rubber. The effect of PK-BU seems to be larger than
can be explained by the 5–10 wt% dilution of EPM-FU. This may be because the polar BM cross-linkers prefer the more polar
PK-FU phase over the less polar EPM-FU phase.

The apparent cross-link density is also plotted versus the total BM content (Fig. 4B), which corresponds with the formed
amount of furan/maleimide DA adducts in the blends. The fairly linear correlation shows that the apparent cross-link density
of the blends is indeed determined mainly by the BM content and thus the total furan content. When increasing the BM con-
tent in EPM-FU in the absence of PK-FU [47] on the other hand results in a decrease of the apparent cross-link density due to
capping of pendant furan-groups with BM. Capping means that all furan units are linked to a single BM molecule, i.e. one
maleimides function of BM is connected to only one polymer chain, while its second maleimides group is not connected.
As a result, no cross-links can be formed. For the EPM-FU/PK-FU blends such an optimum is not observed as these samples
always contain equimolar amounts of furan and BM, resulting in an continuously increasing apparent cross-link density.
3.3. Blend properties

The temperature response of the storage modulus of the cross-linked 95/5 (w/w) EPM-FU/PK blends was studied by
DMTA (Fig. 5). The storage modulus shows a gradual decrease over a temperature range from 20 to 150 �C. This plateau
is followed by a steep drop above 150 �C for all samples when tested. The rubber plateau is a typical feature of covalently
cross-linked rubbers [1], while the drop indicates the softening of the material upon de-cross-linking via the retro-DA



Fig. 5. Storage modulus as a function of temperature for blends of EPM-FU with (A) 5 wt% and (B) 10 wt% of modified PK, thermo-reversibly cross-linked
with BM, as measured with Dynamic Mechanical Thermal Analysis.
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reaction and going into the flow regime [21]. When heated samples were cooled back to 20 �C and tested again, they display
a high recovery of the storage modulus at 25 �C, notably 88%, 94% and 92% for 5PK-FU40, 5PK-FU60 and 5PK-FU80, respec-
tively. These results confirm the reversibility of cross-linking in the blends, which is in agreement with the thermoreversible
behavior of the neat cross-linked rubber reported previously [20].

The samples with PK-FU display a higher storage modulus at low temperatures than the neat EPM-FU rubber as a result of
increased cross-linking. The increase in storage modulus with furan functionalization of the PK-FU at the same PK loading
agrees with the increased cross-link density of these samples and suggests an interaction between PK-FU and EPM-FU.
The rubber plateaus of the samples with PK-FU seem to have a more negative slope compared to EPM-FU, especially at higher
PK loading. This is probably due to the gradual de-cross-linking via the retro-DA reaction (both within the PK domains in the
rubber matrix and between the PK domains and the rubber) and the subsequent softening of the PK domains, resulting in a
loss of rubber elasticity. Finally, the addition of PK-BU to the rubber results in a decrease of the storage modulus, which
decreases rapidly with the temperature approaching 150 �C. The addition of PK-BU therefore appears to disturb the elastic
rubber network strongly, which was also witnessed from the apparent cross-link density. This may be because the polar BM
cross-linker partly dissolves in the polar PK domains and, thus, is excluded from cross-linking the apolar EPM-FU.

All blends exhibit a significantly higher hardness than the neat rubber (Fig. 6A). The hardness of the mixtures with PK-FU
shows the same trend as observed for the apparent cross-link density and the storage modulus. The higher hardness of the
PK-BU reference sample is not consistent with the lower apparent cross-link density and suggests that the PK-BU domains
are rigid. The compression set at room temperature (Fig. 6B) assesses the ability of a sample to recover its original shape after
deformation and, thus, provides a practical measure of the elasticity of a sample, with a low compression set representing
high elasticity. The presence of PK in the blends with EPM-FU rubber has a detrimental effect on the compression set. This is
particularly evident for the samples with PK-BU and with a high PK-FU content. When comparing mixtures with the same PK
content, the compression set becomes lower with increasing degree of furan-functionalization.
Fig. 6. (A) Hardness and (B) compression set at room temperature of cross-linked blends of EPM-FU and PK-FU. Error bars indicate ±1 standard deviation.
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The tensile tests results (Fig. 7A) show that both the Young’s modulus (Fig. 7B) and the tensile strength at break (Fig. 7C)
are significantly higher for the samples containing PK-FU compared to the neat rubber. They increase with both the PK-FU
furan-functionalization and with the PK-FU content. Conversely, the elongation at break of these samples (Fig. 7D) shows an
opposite trend, i.e. it decreases with both PK content and degree of furan functionalization. The increased Young’s modulus
Fig. 7. Median stress-strain curves (A) and average Young’s modulus (B), tensile strength (C) and elongation at break (D) for cross-linked blends of EPM-FU
and PK-FU. Error bars indicate ±1 standard deviation.

Fig. 8. Retention of the cross-link density, hardness, compression set, Young’s modulus, tensile strength and elongation at break for DA cross-linked EPM-
FU and four characteristic EPM-FU/PK-FU blends with different PK-FU content and furan-functionalization.
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and the decreased elongation at break of the PK-BU reference samples imply that the observed effects should be attributed to
both the addition of the non-elastic PK, as well as to the increased apparent cross-link density.

A representative selection of samples with low and high PK-FU content and furan-functionalization has been reprocessed
to determine the retention of the properties (reworked sample/original sample � 100%) (Fig. 8). For all these samples the
cross-link density and hardness are fully retained (>95–105%) upon reprocessing them. The compression set and tensile
properties however, are significantly influenced by reprocessing the sample bars. This influence is more evident for samples
with higher PK-FU content. This may be related to the phase separation of the EPM-FU matrix and the PK-FU domains. Pre-
vious studies showed that the properties of the pure PK-FU are fully retained upon reprocessing [21,23]. In this study the
EPM-FU matrix reconnects the cut sample pieces upon reprocessing. Impoverishment of the dispersed PK-FU in the healed
region may explain deterioration of the compression set and the tensile strength. Nevertheless, material properties of the
reprocessed EPM-FU/PK-FU blends are still retained between 70% and 120% and superior to those of the starting EPM-FU.

4. Discussion

The material properties of the different EPM-FU/PK blends are compared to those of the starting EPM-FU and discussed in
terms of the cross-link density. Upon addition of PK-BU80, the hardness and Young’s modulus of these reference systems
increases, while the cross-link density decreases. So, PK-BU interferes with cross-linking and seems to act as a filler. The ten-
sile strength and elongation at break decrease though, so PK-BU is an inert and not a reinforcing filler. Finally, the compres-
sion set strongly increases, which indicates a major loss of elasticity. This may be because the polar BM migrates from the
apolar EPM-FU into the more polar PK-BU domains. In summary, PK-BU is an inert filler that disrupts cross-linking.

An increase of the furan content of the PK-FU added to EPM-FU results in an increase of the cross-link density, which cor-
relates with the increase in hardness, Young’s modulus and tensile strength and the decrease in elongation at break and com-
pression set. These results are fully in line with the well-known trends of these properties with cross-link density for
vulcanized EPDM [48] and rubber in general [49]. An increase of the amount of PK-FU also results in an increased cross-
link density, which again fully explains the increase of the hardness, Young’s modulus and tensile strength and the decrease
of the elongation at break. However, addition of PK-FU to EPM-FU results in an increased compression set (i.e. reduced
elasticity), which is not consistent with the increased cross-link density.

A series of plots of hardness, compression set, Young’s modulus, tensile strength and elongation at break versus the
apparent cross-link density was constructed (Fig. S1). The trends discussed above are clear, but there seems to be no simple
correlation, i.e. there is a lot of scatter in the data. This shows that the EPM-FU/PK-FU blends cross-linked with BM are com-
plex systems with properties not solely determined by the cross-link density. For a part, this may be because the use of the
apparent cross-link density is tricky, since it is not absolutely correct due to the heterogeneity of the EPM-FU/PK-FU-blends
and the multifunctional character of PK-FU.

Overall, PK-FU behaves as a multi-functional cross-linking aid, though it also seems to have some characteristics of an
inert filler. PK-FU does not act in the same way as a coagent in peroxide curing of elastomers. For peroxide resins, the
Fig. 9. Schematic representation of the formation of highly cross-linked PK-FU domains in EPM-FU rubbers upon addition of BM cross-linker.



218 L.M. Polgar et al. / European Polymer Journal 82 (2016) 208–219
addition of a coagent results in a higher cross-link density at the same peroxide content whereas the multi-functional PK-FU
cross-linking aid allows for the addition of higher amounts of BM cross-linker. This results in higher cross-link densities and
a corresponding improvement of the mechanical properties. The use of PK-FU as a multifunctional cross-linking aid is
expected to create hard, cross-linked domains in the EPM-FU matrix, thereby increasing the apparent cross-link density
(Fig. 9).

The addition of PK-FU to the EPM-FU rubber allows the apparent cross-link density of the rubber compound to approach
industrially relevant cross-link density levels (equal or above 10�4 mol/cm3) [50–52]. On top of that, PK can easily be func-
tionalized with different amounts of furan groups, allowing for a new way of tuning the cross-link density of the resulting
rubber mixtures. Finally, the addition of PK-FU does not affect the thermoreversible nature of EPM-FU cross-linked with BM,
allowing for ‘cradle-to-cradle’ production and recycling of the waste into new products with similar mechanical properties.

5. Conclusions

The cross-link density of thermo-reversibly cross-linked EPM rubber was increased beyond the limit imposed by its
degree of maleic anhydride functionalization without affecting the thermoreversible character of the cross-links. This was
achieved by mixing furan-modified EPM rubber with various amounts of a furan-functionalized PK and cross-linking the
blend with an aromatic BM through Diels Alder chemistry. The addition of PK-FU to the thermoreversibly cross-linked
EPM-FU system allows for the addition of larger amounts of BM, resulting in an increase of the cross-link density. Mechanical
properties, such as hardness, compression set, Young’s modulus, tensile strength and elongation at break, can therefore be
modulated by varying the furan functionalization and/or the amount of PK-FU. It is concluded that PK-FU acts as a multifunc-
tional cross-linking aid, though it also has some inert filler characteristics. The resulting cross-linked polymer network exhi-
bits excellent reversibility as proven by DMTA and the retention of properties upon reprocessing the material, allowing for
the material to be recycled on a ‘cradle-to-cradle’ basis.
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