8,706 research outputs found
Recommended from our members
Computational chemistry on parallel computers
The recent successful adaptation of mainline computational chemistry codes to parallel computers introduces a new era of cost-effective, computer-intensive chemistry applications and paves the way for future applications on massively parallel centralized computers being developed under the High Performance Computer and Communications Initiative. Parallel computer architecture offers the promise of inexpensive supercomputing for the price of effort in algorithm adaptations to parallelism. In Chemical Sciences-supported work at Argonne, beginning efforts at algorithm changes in computational chemistry codes has resulted in program performances on the Group`s 12-processor Alliant computer superior to that on one-processor Cray X-MP or Y-MP computers. The effort so far has focused on sophisticated and highly accurate electronic structure production codes for determining the forces between atoms and molecules responsible for chemical structure, spectra, and reactivity. Some effort has also been invested in trajectory simulations of molecular dynamics. The American-made Alliant computer (model FX/2812) is one of the latest generation of shared-memory group- or division-size computers that generally cost about an order of magnitude less than the laboratory- or university-size computers such as Crays
Neutron Beta Decay Studies with Nab
Precision measurements in neutron beta decay serve to determine the coupling
constants of beta decay and allow for several stringent tests of the standard
model. This paper discusses the design and the expected performance of the Nab
spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg,
Florida, May 201
Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging
Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.This work is funded by a NERC (Natural Environment Research Council) CASE studentship (NE/K007521/1) with contribution from industrial partner Fera Science Ltd., United Kingdom. The authors would like to thank Peter Vale, from Severn Trent Water Ltd, for providing access to and additionally Ashley Howkins (Brunel University London) for providing travel and assistance with the sampling of the Severn Trent wastewater treatment plant in Derbyshire, UK. We are grateful to Emma Bradley and Chris Sinclair for providing helpful suggestions for our research
Fenton's reagent for the rapid and efficient isolation of microplastics from wastewater
Fentonâs reagent was used to isolate microplastics from organic-rich wastewater. The catalytic reaction did not affect microplastic chemistry or size, enabling its use as a pre-treatment method for focal plane array-based micro-FT-IR imaging. Compared with previously described microplastic treatment methods, Fentonâs reagent offers a considerable reduction in sample preparation times
Recommended from our members
Results from the CERN pilot CLOUD experiment
During a 4-week run in OctoberâNovember 2006, a pilot experiment was performed at the CERN Proton Synchrotron in preparation for the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment, whose aim is to study the possible influence of cosmic rays on clouds. The purpose of the pilot experiment was firstly to carry out exploratory measurements of the effect of ionising particle radiation on aerosol formation from trace H2SO4 vapour and secondly to provide technical input for the CLOUD design. A total of 44 nucleation bursts were produced and recorded, with formation rates of particles above the 3 nm detection threshold of between 0.1 and 100 cmâ3 sâ1, and growth rates between 2 and 37 nm hâ1. The corresponding H2SO4 concentrations were typically around 106 cmâ3 or less. The experimentally-measured formation rates and H2SO4 concentrations are comparable to those found in the atmosphere, supporting the idea that sulphuric acid is involved in the nucleation of atmospheric aerosols. However, sulphuric acid alone is not able to explain the observed rapid growth rates, which suggests the presence of additional trace vapours in the aerosol chamber, whose identity is unknown. By analysing the charged fraction, a few of the aerosol bursts appear to have a contribution from ion-induced nucleation and ion-ion recombination to form neutral clusters. Some indications were also found for the accelerator beam timing and intensity to influence the aerosol particle formation rate at the highest experimental SO2 concentrations of 6 ppb, although none was found at lower concentrations. Overall, the exploratory measurements provide suggestive evidence for ion-induced nucleation or ion-ion recombination as sources of aerosol particles. However in order to quantify the conditions under which ion processes become significant, improvements are needed in controlling the experimental variables and in the reproducibility of the experiments. Finally, concerning technical aspects, the most important lessons for the CLOUD design include the stringent requirement of internal cleanliness of the aerosol chamber, as well as maintenance of extremely stable temperatures (variations below 0.1 _C)
Changing times in England: the influence on geography teachersâ professional practice
School geography in England has been characterised as a pendulum swinging between policies that emphasise curriculum and pedagogy alternately. In this paper, I illustrate the influence of these shifts on geography teacher's professional practice, by drawing on three âmomentsâ from my experience as a student, teacher and teacher educator. Barnett's description of teacher professionalism as a continuous project of âbeingâ illuminates how geography teachers can adapt to competing influences. It reflects teacher professionalism as an unfinished project, which is responsive, but not beholden, to shifting trends, and is informed by how teachers frame and enact policies. I argue that recognising these contextual factors is key to supporting geography teachers in âbeingâ geography education professionals. As education becomes increasingly competitive on a global scale, individual governments are looking internationally for âsolutionsâ to improve educational rankings. In this climate, the future of geography education will rest on how teachers react locally to international trends. Geography teacher educators can support this process by continuing to inform the field through meaningful geography education research, in particular in making the contextual factors of their research explicit. This can be supported through continued successful international collaboration in geography education research
Recommended from our members
The composition and functional protein subsystems of the human nasal microbiome in granulomatosis with polyangiitis: a pilot study
Abstract: Background: Ear, nose and throat involvement in granulomatosis with polyangiitis (GPA) is frequently the initial disease manifestation. Previous investigations have observed a higher prevalence of Staphylococcus aureus in patients with GPA, and chronic nasal carriage has been linked with an increased risk of disease relapse. In this cross-sectional study, we investigated changes in the nasal microbiota including a detailed analysis of Staphylococcus spp. by shotgun metagenomics in patients with active and inactive granulomatosis with polyangiitis (GPA). Shotgun metagenomic sequence data were also used to identify protein-encoding genes within the SEED database, and the abundance of proteins then correlated with the presence of bacterial species on an annotated heatmap. Results: The presence of S. aureus in the nose as assessed by culture was more frequently detected in patients with active GPA (66.7%) compared with inactive GPA (34.1%). Beta diversity analysis of nasal microbiota by bacterial 16S rRNA profiling revealed a different composition between GPA patients and healthy controls (P = 0.039). Beta diversity analysis of shotgun metagenomic sequence data for Staphylococcus spp. revealed a different composition between active GPA patients and healthy controls and disease controls (P = 0.0007 and P = 0.0023, respectively), and between healthy controls and inactive GPA patients and household controls (P = 0.0168 and P = 0.0168, respectively). Patients with active GPA had a higher abundance of S. aureus, mirroring the culture data, while healthy controls had a higher abundance of S. epidermidis. Staphylococcus pseudintermedius, generally assumed to be a pathogen of cats and dogs, showed an abundance of 13% among the Staphylococcus spp. in our cohort. During long-term follow-up of patients with inactive GPA at baseline, a higher S. aureus abundance was not associated with an increased relapse risk. Functional analyses identified ten SEED protein subsystems that differed between the groups. Most significant associations were related to chorismate synthesis and involved in the vitamin B12 pathway. Conclusion: Our data revealed a distinct dysbiosis of the nasal microbiota in GPA patients compared with disease and healthy controls. Metagenomic sequencing demonstrated that this dysbiosis in active GPA patients is manifested by increased abundance of S. aureus and a depletion of S. epidermidis, further demonstrating the antagonist relationships between these species. SEED functional protein subsystem analysis identified an association between the unique bacterial nasal microbiota clusters seen mainly in GPA patients and an elevated abundance of genes associated with chorismate synthesis and vitamin B12 pathways. Further studies are required to further elucidate the relationship between the biosynthesis genes and the associated bacterial species
âItâs hard to tellâ. The challenges of scoring patients on standardised outcome measures by multidisciplinary teams: a case study of Neurorehabilitation
Background
Interest is increasing in the application of standardised outcome measures in clinical practice. Measures designed for use in research may not be sufficiently precise to be used in monitoring individual patients. However, little is known about how clinicians and in particular, multidisciplinary teams, score patients using these measures. This paper explores the challenges faced by multidisciplinary teams in allocating scores on standardised outcome measures in clinical practice.
Methods
Qualitative case study of an inpatient neurorehabilitation team who routinely collected standardised outcome measures on their patients. Data were collected using non participant observation, fieldnotes and tape recordings of 16 multidisciplinary team meetings during which the measures were recited and scored. Eleven clinicians from a range of different professions were also interviewed. Data were analysed used grounded theory techniques.
Results
We identified a number of instances where scoring the patient was 'problematic'. In 'problematic' scoring, the scores were uncertain and subject to revision and adjustment. They sometimes required negotiation to agree on a shared understanding of concepts to be measured and the guidelines for scoring. Several factors gave rise to this problematic scoring. Team members' knowledge about patients' problems changed over time so that initial scores had to be revised or dismissed, creating an impression of deterioration when none had occurred. Patients had complex problems which could not easily be distinguished from each other and patients themselves varied in their ability to perform tasks over time and across different settings. Team members from different professions worked with patients in different ways and had different perspectives on patients' problems. This was particularly an issue in the scoring of concepts such as anxiety, depression, orientation, social integration and cognitive problems.
Conclusion
From a psychometric perspective these problems would raise questions about the validity, reliability and responsiveness of the scores. However, from a clinical perspective, such characteristics are an inherent part of clinical judgement and reasoning. It is important to highlight the challenges faced by multidisciplinary teams in scoring patients on standardised outcome measures but it would be unwarranted to conclude that such challenges imply that these measures should not be used in clinical practice for decision making about individual patients. However, our findings do raise some concerns about the use of such measures for performance management
Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Spectral Shape Anomaly and Magnetostrictive Effects
We calculate the Raman spectrum of the two-dimensional (2D) spin-1/2
Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo
techniques on clusters of up to 144 sites and, on a 16-site cluster, by
considering the phonon-magnon interaction which leads to random fluctuations of
the exchange integral. Results are in good agreement with experiments on
various high-T_c precursors, such as La_2CuO_4 and YBa_2Cu_3O_{6.2}. In
particular, our calculations reproduce the broad lineshape of the two-magnon
peak, the asymmetry about its maximum, the existence of spectral weight at high
energies, and the observation of nominally forbidden A_{1g} scattering.Comment: 12 pages, REVTEX, 1 postscript figur
- âŚ