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The recent successful adaptation of mainline computational chemistry codes to parallel computers

introduces a new era of cost-effective, computer-intensive chemistry applications and paves the way for

future applications on massively parallel centralized computers being developed under the High Perfor-

mance Computer and Communications Initiative. Parallel computer architecture offers the promise of

inexpensive supercomputing for the price of effort in algorithm adaptations to parallelism. In Chemical

Sciences-supported work by the Theoretical Chemistry Group at Argonne National Laboratory, beginning

efforts at algorithm changes in computational chemistry codes has resulted in program performances on

the Group's 12-processor Alliant computer superior to that on one-processor Cray X-MP or Y-MP com-

puters. The effort so far has focused on sophisticated and highly accurate electronic structure production

codes for determining the forces between atoms and molecules responsible for chemical structure, spec-

tra, and reactivity. Some effort has also been invested in trajectory simulations of molecular dynamics.

The American-made Alliant computer (model FX/2812) is one of the latest generation of shared-memory

group- or division-size computers that generally cost about an order of magnitude less than the

I_._oratory-or university-size computers such as Crays.
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Parallelism is the future of supercomputer design because of the cost savings in

manufacturing many small processors which have in aggregate the power of one large

processor. However, this savings can only be realized if software applications can be

redesigned to evenly and continually distribute the work over all processors. The extent and

success of redesign of a particular software application depends on the general nature of the

parallel architecture. Two of the most convenient forms of parallelism for computational

chemistry applications are shared-memory or distributed-memory multiple-instruction

architectures where each processor is independently programable and has direct access to

either a common memory (shared-memory model) or its own memory (distributed-memory

model). The Theoretical Chemistry Group at Argonne National Laboratory has recently

acquired a shared-memory multiple-instruction computer in order to carry out its dual

mission of theoretical studies in combustion chemistry and studies of parallelization

strategies for chemistry codes. The computer selected is an American-made, 12 processor

Alliant FX/28 I2 computer. After initial modest efforts at software redesign, our key

computational chemistry application (an electronic structure code) and several detailed

models of parallel applications have been successfully ported to the FX/2812. Performance

of these codes is generally comparable or superior to that obtained on single processor Cray

X-MP or Y-MP computers.

The most heavily used and computationally intensive code of the Theoretical

Chemistry Group is the multi-reference, singles- and doubles-excitation, configuration

interaction (MRSDCI) electronic structure code called COLUMBUS. This code directly

calculates the potential energy of the nuclei and electrons for a given geometrical

arrangement of atoms and molecules. Variation of this energy with geometry defines the



forces that are responsible for chemical structure, spectra, and reactivity. The MRSDCI

approach is particularly appropriate for describing reactive processes where bonds are

broken and formed. The COLUMBUS embodiment of the MRSDCI approach has been

fine-tuned for non parallel computers by an international team of collaborators headed by the

ANL Theoretical Chemistry Group and is available to all chemists. The initial parallelization

of this code has been completed, and the performance of four important routines in the

COLUMBUS program package have been examined in detail.

The first of these routines is the evaluation of integrals over an atomic orbital (AO)

basis set. (The MRSDCI method solves the partial differential Schroedinger Equation for the

electronic wavefunction and energy by a basis set expansion.) For typical applications,

many millions of integrals must be computed and the independence of each integral makes

the application highly parallel and scalar. The initial parallelization effort produces timings

with four processors that are comparable to a Cray X-MP, and with eight processors that are

about twice as fast.

The second routine investigated in detail calculates the Self-Consistent Field (SCF)

wavefunction, the zeroth-order wavefunction produced by COLUMBUS. This

wavefunction is expressed in terms of molecular orbitals (MOs) which are the starting points

for subsequent calculations of greater accuracy. Conventional SCF methods iteratively

process the integrals discussed above, refining the MOs in each iteration. The SCF program

whose performance was examined in detail is a direct SCF code, i.e., one that recomputes

the integrals each iteration. Thus the performance characteristics are not contaminated by

problems related to I/O storage and retrieval. The code was parallelized over construction of

the Fock matrix (O(Norb4) work) while its diagonalization was left serial (O(Norb3) work),

Norb being the number of basis functions. This code is essentially scalar with O(Norb2)

communication required between processes. By three processors, the timing is comparable

to a one-processor Cray X-MP. By ten processors, it is three times faster.



The third routi ne is a Four-Index Transformation which converts the integrals from

the AO basis to the MO basis (O(Norb5) work). This is a vector, as opposed to scalar,

operation dominated by matrix multiplications of Norb by Norb matrices. There is O(Norb4)

interprocessor communication, which accounts for approximately <5% of the elapsed time.

The resulting code shows an approximately linear speed-up in the timings with the number

of processors until about six processors. Beyond six processors, only quite modest

improvements in the timings are obtained resulting in values that are about two to three times

slower than a one-processor Cray. In principle, the matrix multiply operation should run at

full speed on all vector computers (of which the FX/2812 is one). However, most vector

code inevitably involves many memory accesses and performance is thus limited by

available external memory bandwidth (to either the shared or global memory). In the

FX/2800 architecture, processors are paired to a single memory port. When both

processors are busy, the memory bandwidth of either processor is halved. Thus, with 12

processors, a FX/2812 can supply six processors with full access to memory. Each

additional processor after six will not substantially improve timings for an application

limited by access to memory, as the four-index transformation is.

' The last routine examined in detail is the Configuration Interaction (CI) program.

The CI step dominates the total application time for studies on larger molecules. This

routine uses the integrals calculated by the four-index transformation to compute a highly

accurate final wavefunction and energy. In simple terms, the algorithm corresponds to the

iterative diagonalization of a large sparse matrix (too large to store), being dominated by

matrix-vector and matrix-matrix products of dimension Norb. The computation expense is at

least O(Norb6). The code is parallelized over segments of the expansion and result vectors.

However, the act of segmenting the expansion and result vectors introduces an overhead

even on one processor. More effort at algorithmic changes should eliminate much of this

overhead. In this version the interprocessor communication is O(Norb4), and is negligible

compared to the computation for few processors. The timings show a flattening out of



performance after about six processors, as expected for vector-dominated applications, but

the flattening out is less severe than for the four-index transformation step. By eight

processors, the timing is more than twice as fast as that of a one-processor Cray X-MP.

Although most of the work has focused on paraJlelization of electronic structure

calculations, one trajectory dynamics application has been briefly examined. By their

nature, the work in the calculation of trajectories can be readily distributed to different

processors and memory bandwidth is not often a problem. In the particular application

examined, a simple molecular dynamics (MD) code was parallelized (but not vectorizes) for

the FX/2800. In an application involving the propagation of 864 argon atoms with

Leonard-Jones potentials for 400 steps with periodic boundary conditions, timings indicate

near linear speedup with processors. By twelve processors, the timings were superior to a

one processor Cray Y-MP. This code is fully vectorized on the Cray, suggesting that

vectorization on the FX/2812 could further improve the comparison.

All the codes discussed above have been parallelized using the portable message

passing toolkit, TCGMSG, developed by the Theoretical Chemistry Group. This toolkit is

installed on a variety of both shared-memory and distributed-memory parallel computers as

well as serial computers. Thus all of the code described above can be directly run on

computers of completely different character, ensuring high portability. In particular, the

High Performance Computer and Communications Initiative is spurring the development of

massively parallel centralized computers with a two order of magnitude increase in power

over that of a single processor Cray. The Touchstone Delta project is the first example of

this effort. This computer uses 512 of the same processors used in the FX/28 12, only in a

distributed memory format. The codes discussed should directly run on the Touchstone, as

will be tested by the Group when the machine becomes available this summer.
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