4,325 research outputs found
Stress of different types increases the proinflammatory load in rheumatoid arthritis
Stress in patients with chronic inflammatory diseases such as rheumatoid arthritis (RA) stimulates proinflammatory mechanisms due to the defect of stress response systems (for example, the sympathetic nervous system and the hypothalamic–pituitary–adrenal axis). Among other mechanisms, the loss of sympathetic nerve fibers in inflamed tissue and inadequate cortisol secretion in relation to inflammation lead to an enhanced proinflammatory load in RA. Stress and the subsequent stimulation of inflammation (systemic and local) lead to increased sensitization of pain and further defects of stress response systems (vicious cycle of stress, pain, and inflammation)
Circular geodesics and thick tori around rotating boson stars
Accretion disks play an important role in the evolution of their relativistic
inner compact objects. The emergence of a new generation of interferometers
will allow to resolve these accretion disks and provide more information about
the properties of the central gravitating object. Due to this instrumental leap
forward it is crucial to investigate the accretion disk physics near various
types of inner compact objects now to deduce later constraints on the central
objects from observations. A possible candidate for the inner object is the
boson star. Here, we will try to analyze the differences between accretion
structures surrounding boson stars and black holes. We aim at analysing the
physics of circular geodesics around boson stars and study simple thick
accretion tori (so-called Polish doughnuts) in the vicinity of these stars. We
realize a detailed study of the properties of circular geodesics around boson
stars. We then perform a parameter study of thick tori with constant angular
momentum surrounding boson stars. This is done using the boson star models
computed by a code constructed with the spectral solver library KADATH. We
demonstrate that all the circular stable orbits are bound. In the case of a
constant angular momentum torus, a cusp in the torus surface exists only for
boson stars with a strong gravitational scalar field. Moreover, for each inner
radius of the disk, the allowed specific angular momentum values lie within a
constrained range which depends on the boson star considered. We show that the
accretion tori around boson stars have different characteristics than in the
vicinity of a black hole. With future instruments it could be possible to use
these differences to constrain the nature of compact objects.Comment: Accepted for publication in CQ
Oviposition Model for Timing Insecticide Sprays Against Plum Curculio (Coleoptera: Curculionidae) in New York State
Plum curculio, Conotrachelus nenuphar (Herbst), feeding and oviposition on apples during spring was measured for 3 yr in a heavily infested orchard in New York State. A logistic model was formulated to relate cumulative fruit injury to cumulative heat units (degree-days base 10°C [DD10]) following petal fall. Cumulative plum curculio injury was well described by the model in the trees from which data for the model were collected. However, injury progressed faster and ended earlier in smaller trees at the same site and at a different site, probably because of differences in tree architecture. Field trials showed that protection of the fruit via insecticide residue was no longer necessary after the model predicted that 40% of the cumulative plum curculio oviposition and feeding cycle had been completed (171 DD10 after petal fall). Based on historical weather records, use of the model to schedule insecticide treatments would save 1 insecticide application nearly half the time compared with a standard of 3 insecticide applications. A delay between initial plum curculio feeding and oviposition, which coincides with the petal fall, phenophase, and steadily increasing damage, which is influenced by temperatures after petal fall was observed. The effectiveness of delaying insecticide treatments until the rate of plum curculio damage was rapidly increasing was compared with treatments applied at petal fall. Delaying the 1st insecticide application resulted in higher levels of damage compared with making the 1st treatment immediately after petal fal
Pinning forces of sliding drops at defects
Wetting of surfaces depends critically on defects which alter the shape of the drop. However, no experimental verification of forces owing to the three phase contact line deformation at single defects is available. We imaged the contact line of sliding drops on hydrophobic surfaces by video microscopy. From the deformation of the contact line, we calculate the force acting on a sliding drop using an equation going back to Joanny and de Gennes (J. Chem. Phys., 81 (1984) 554). The calculated forces quantitatively agree with directly measured forces acting between model defects and water drops. In addition, both forces quantitatively match with the force calculated by contact angle differences between the defect and the surface. The quantitative agreement even holds for defects reaching a size of of the drop diameter. Our validation for drop’s pinning forces at single defects is an important step towards a general understanding of contact line motion on heterogeneous surfaces
Recommended from our members
Winter 1973
Field Evaluation of Insecticides for Controlling Mole Crickets in Turf (page 3) Calculations for Turfgrass Culture II: Pesticides (6) Progress in the Control of Turfgrass Weevil, a Species of Hyperodes (9) A Look at USDA\u27s Biological Control of Insect Pests: 1888 to Present (14) Turf Bulletin Index 1970-1973 (23
SMART Rotor Development and Wind-Tunnel Test
Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper
Fibrin formation and platelet activation in patients with myocardial infarction and normal coronary arteries
Coronary spasm is the mechanism most often postulated to explain the rare combination of myocardial infarction and angiographically normal coronary arteries, although the reported evidence for its role is circumstantial rather than conclusive. Whereas the importance of thrombosis in myocardial infarction is uncontested in the presence of significant coronary artery disease, there is little in vivo evidence for thrombosis in angiographically normal coronary arteries. Among 11 consecutive patients with acute myocardial infarction undergoing thrombolytic therapy with recombinant tissue plasminogen activator (rtPA) 3.2 ± 0.7h after onset of chest pain, and angiography 10.2 ± 4.5 days later, three young men had normal coronary arteries. Their cases are documented electrocadiographically, enzymatically and angiographically. Mean plasma levels of fibrinopeptide A (FPA) and beta-thromboglobulin (BTG) were clearly elevated before and during rtPA therapy: FPA 52 ± 41 ng ml-1, BTG 257 ± 46 ng ml-1. They did not differ significantly from corresponding mean plasma levels in the eight patients with severe coronary artery disease: FPA 67 ± 66 ng ml-1, BTG 181 ± 75 ng ml-1. We conclude that fibrin formation and platelet activation are probably equally important in the early hours of myocardial infarction, whether or not significant coronary artery disease is presen
Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis
Prokineticin 2 (PK2) is a secreted protein involved in several pathological and physiological processes, including the regulation of inflammation, sickness behaviors, and circadian rhythms. Recently, it was reported that PK2 is associated with the pathogenesis of collagen-induced arthritis in mice. However, the role of PK2 in the pathogenesis of rheumatoid arthritis (RA) or osteoarthritis (OA) remains unknown. In this study, we collected synovial tissue, plasma, synovial fluid, and synovial fibroblasts (SF) from RA and OA patients to analyze the function of PK2 using immunohistochemistry, enzyme-linked immunosorbent assays, and tissue superfusion studies. PK2 and its receptors prokineticin receptor (PKR) 1 and 2 were expressed in RA and OA synovial tissues. PKR1 expression was downregulated in RA synovial tissue compared with OA synovial tissue. The PK2 concentration was higher in RA synovial fluid than in OA synovial fluid but similar between RA and OA plasma. PK2 suppressed the production of IL-6 from TNFα-prestimulated OA-SF, and this effect was attenuated in TNFα-prestimulated RA-SF. This phenomenon was accompanied by the upregulation of PKR1 in OA-SF. This study provides a new model to explain some aspects underlying the chronicity of inflammation in RA
- …