1,154 research outputs found

    Toolbox for analyzing finite two-state trajectories

    Get PDF
    In many experiments, the aim is to deduce an underlying multi-substate on-off kinetic scheme (KS) from the statistical properties of a two-state trajectory. However, the mapping of a KS into a two-state trajectory leads to the loss of information about the KS, and so, in many cases, more than one KS can be associated with the data. We recently showed that the optimal way to solve this problem is to use canonical forms of reduced dimensions (RD). RD forms are on-off networks with connections only between substates of different states, where the connections can have non-exponential waiting time probability density functions (WT-PDFs). In theory, only a single RD form can be associated with the data. To utilize RD forms in the analysis of the data, a RD form should be associated with the data. Here, we give a toolbox for building a RD form from a finite two-state trajectory. The methods in the toolbox are based on known statistical methods in data analysis, combined with statistical methods and numerical algorithms designed specifically for the current problem. Our toolbox is self-contained - it builds a mechanism based only on the information it extracts from the data, and its implementation on the data is fast (analyzing a 10^6 cycle trajectory from a thirty-parameter mechanism takes a couple of hours on a PC with a 2.66 GHz processor). The toolbox is automated and is freely available for academic research upon electronic request

    A LEKID-based CMB instrument design for large-scale observations in Greenland

    Get PDF
    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to <4<\,4 K by a closed-cycle 4^4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150~GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267~GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34\% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15~arcmin at 150~GHz) makes the instrument sensitive to 5<<10005 < \ell < 1000 in the angular power spectra

    The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)

    Get PDF
    The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKID). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, five-day flights beginning with the 150 GHz observations.Comment: J Low Temp Phys DOI 10.1007/s10909-013-1014-3 The final publication is available at link.springer.co

    Motor Skill Learning, Retention, and Control Deficits in Parkinson's Disease

    Get PDF
    Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance

    The prevalence and incidence of mental ill-health in adults with autism and intellectual disabilities

    Get PDF
    The prevalence, and incidence, of mental ill-health in adults with intellectual disabilities and autism were compared with the whole population with intellectual disabilities, and with controls, matched individually for age, gender, ability-level, and Down syndrome. Although the adults with autism had a higher point prevalence of problem behaviours compared with the whole adult population with intellectual disabilities, compared with individually matched controls there was no difference in prevalence, or incidence of either problem behaviours or other mental ill-health. Adults with autism who had problem behaviours were less likely to recover over a two-year period than were their matched controls. Apparent differences in rates of mental ill-health are accounted for by factors other than autism, including Down syndrome and ability level

    Aristotle’s assertoric syllogistic and modern relevance logic

    Get PDF
    This paper sets out to evaluate the claim that Aristotle’s Assertoric Syllogistic is a relevance logic or shows significant similarities with it. I prepare the grounds for a meaningful comparison by extracting the notion of relevance employed in the most influential work on modern relevance logic, Anderson and Belnap’s Entailment. This notion is characterized by two conditions imposed on the concept of validity: first, that some meaning content is shared between the premises and the conclusion, and second, that the premises of a proof are actually used to derive the conclusion. Turning to Aristotle’s Prior Analytics, I argue that there is evidence that Aristotle’s Assertoric Syllogistic satisfies both conditions. Moreover, Aristotle at one point explicitly addresses the potential harmfulness of syllogisms with unused premises. Here, I argue that Aristotle’s analysis allows for a rejection of such syllogisms on formal grounds established in the foregoing parts of the Prior Analytics. In a final section I consider the view that Aristotle distinguished between validity on the one hand and syllogistic validity on the other. Following this line of reasoning, Aristotle’s logic might not be a relevance logic, since relevance is part of syllogistic validity and not, as modern relevance logic demands, of general validity. I argue that the reasons to reject this view are more compelling than the reasons to accept it and that we can, cautiously, uphold the result that Aristotle’s logic is a relevance logic
    corecore