19 research outputs found

    Primitive layered gabbros from fast-spreading lower oceanic crust

    Get PDF
    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt

    Ridge suction drives plume-ridge interactions

    No full text
    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: (1) The decreasing La/Sm and increasing MgO and CaO/Al2O3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. (2) The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. (3) The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and geochemical anomalies extend 1500 km along the faster (20 to 25 mm/yr southward) spreading Reykjanes Ridge. (4) The spreading-rate dependent ridge suction force also explains the first-order differences between the fast-spreading East Pacific Rise (EPR) and the slow-spreading Mid-Atlantic Ridge (MAR). Identified mantle plumes/hotspots are abundant near the MAR (e.g., Iceland, Azores, Ascension, Tristan, Gough, Shona and Bouvet), but rare along the entire EPR (notably, the Easter hotspot at ~ 27°S on the Nazca plate). Such apparent unequal hotspot distribution would allow a prediction of more enriched MORB at the MAR than at the EPR. However, the mean compositions between MAR-MORB and EPR-MORB are the same in terms of incompatible element abundances, and are identical in terms of Sr-Nd-Pb isotopic ratios. This suggests similar extents of mantle plume contributions to EPR and MAR MORB. We consider that the apparent rarity of near-EPR plumes/hotspots results from fast spreading. The fast spreading creates large ridge suction forces that do not allow the development of surface expressions of mantle plumes as such, but draw plume materials to a broad zone of sub-ridge upwelling, giving rise to random distribution of abundant enriched MORB and elevated and smooth axial topography along the EPR (vs. MAR). One of the important implications is that the asthenospheric flow is necessarily decoupled from its overlaying oceanic lithospheric plate. This decoupling increases with increasing spreading rate

    Magmatism in the Garrett transform fault (East Pacific Rise near 13°27â€ČS)

    Get PDF
    The Garrett transform is characterized by recent (zero age) volcanic activity located within the active tectonic domain of the transform valley at depths greater than the 3500 m. This intratransform volcanic activity contributed to the formation of constructional edifices forming ridges (>300 m in height) and small mounds (<20 m in height) built near slivers of serpentinized peridotites. The erupted lavas are depleted mid ocean ridge basalts (MORBs) with low ratios of K/Ti (0.02–0.11), Zr (30–100 ppm), Y (18–50 ppm), and (La/Sm)N (0.25–0.60). Their more depleted nature and smaller range of variability for the compatible elements (Ni = 70–180 ppm, Mg# = 0.58–0.71, where Mg# is the magnesium number (= Mg+2/Mg+2 + Fe+2)) are the main points of difference between the Garrett intratransform volcanics (GITV) and those from the ultrafast south East Pacific Rise (SEPR). However, ferrobasalts (Mg# = 0.41–0.55) were collected from the intratransform walls as well as at the EPR-transform intersection. The GITV are even more depleted in incompatible elements than lava from the north East Pacific Rise (21°N-11°26â€ČN). The Garrett recent lava is believed to have erupted after the successive, incremental partial melting and discontinuous melt extraction of a composite lherzolitic mantle similar to that of the SEPR. The limited range of incompatible element ratios (Zr/Y = 1–2.5, (Ce/Yb)N = 0.4–1) and K/Ti ratios (<0.14) and the samples more porphyritic nature with respect to other SEPR rocks suggest that the intratransform volcanics from the Garrett are extracted from their source and channeled directly toward the surface without extensive mixing in magma chambers. In order to explain the restricted range of compositional variabilities and the absence of the enriched basalts produced by prior melting, we postulate that even though they were produced, these most enriched end-member lavas did not reach the surface; instead, we propose these melts contribute to the formation of impregnated mantle material in the lithosphere. We suggest that this same petrogenetic style of intratransform volcanism might also characterize other oceanic provinces associated with low magmatic to quasi-amagmatic regimes

    Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33 - 35°N

    No full text
    Mantle temperature variation and plate spreading rate variation have been considered to be the two fundamental variables that determine the extent of mantle melting and ocean crust production. Along the length of a 200 km portion of the Mid-Atlantic Ridge (MAR) between the Oceanographer (35°N) and Hayes (33°N) transforms, the mantle potential temperature is the same, the plate spreading rate is the same, but the extent of mantle melting and crustal production vary drastically. In addition to the typical crustal thickness variation on ridge segment scales at the MAR, i.e. thicker at segment centers and thinner at segment ends, there exist between-segment differences. For example, the 90 km long segment OH-1 is magmatically robust with a central topographic high, thick crust, and a large negative gravity anomaly whereas the 45 km long segment OH-3 is magmatically starved with a deep rift valley, thin crust and a weak negative gravity anomaly. We demonstrate that the observed differences in the extent of mantle melting, melt production and crustal mass between segments OH-1 and OH-3 are ultimately controlled by their fertile mantle source compositional difference as reflected by the lava compositional differences between the two segments: >70% of OH-1 samples studied (N=57) are enriched MORB with [La/Sm]N>1, but >85% of OH-3 samples studied (N=42) are depleted MORB with [La/Sm]N<1. Calculations show that the mean OH-1 source is more enriched in incompatible elements, total alkalis (0.36 wt% Na2O and 0.09% K2O) and H2O content (280 ppm) than the mean OH-3 source, which is depleted of incompatible elements, total alkalis (<0.17% Na2O and <0.01% K2O) and H2O content (70 ppm). These fertile compositional differences result in significantly reduced solidus temperature of OH-1 source over that of OH-3 source, and allows melting to begin at a significantly greater depth beneath OH-1 (90 km) than beneath OH-3 (<60 km), leading to a taller melting column, higher degrees of decompression melting, greater melt production, thus thicker crust and more negative gravity anomaly at OH-1 than at OH-3. We emphasize that fertile mantle source compositional variation is as important as mantle temperature variation and plate spreading rate variation in governing the extent of mantle melting, crustal production, and MORB chemistry. The buoyancy-driven focused mantle upwelling model better explains the observations than the subcrustal melt migration model. Future mantle flow models that consider the effect of fertile mantle compositional variation are expected to succeed in producing along-axis wavelengths of buoyant flow comparable to the observed size of ridge segments at the MAR. We propose that the size and fertility of the enriched mantle heterogeneities may actually control the initiation and evolution of ridge segments bounded by non-rigid discontinuities at slow-spreading ridges

    The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14 degrees 45 ' N, Mid-Atlantic Ridge) and its influence on massive sulfide formation

    No full text
    The Logatchev hydrothermal field (14°45â€ČN on the MAR) is one of a few submarine hydrothermal systems associated with ultramafic rocks. It is situated on the eastern inner flank of the rift valley wall, 7 km away from the spreading axis and its formation has previously been linked to detachment faulting and core complex formation. Geological mapping during various ROV dives, geological sampling, and shallow drilling reveal a structural control of hydrothermal activity as well as its location in a debris flow consisting of heterogeneous ultramafic and mafic intrusive rocks. The mixed mafic/ultramafic host rock lithology is in agreement with published vent fluid and gas chemical data showing characteristics for interaction with mafic as well as with ultramafic rocks. Massive sulfide formation is more focused than previously thought and likely limited to a thin veneer at the seafloor. The Logatchev hydrothermal field shows a number of peculiarities that are unusual for most other hydrothermal systems. One of these are so-called ,,smoking craters", seafloor depressions that are several meters wide, characterized by an elevated crater rim made up partly of sulfide talus but also of abundant wall rock material. At these smoking craters hydrothermal venting occurs directly from holes within the craters and from small, cm to dm high, Cu-rich chimneys occurring at the crater rim. Based on geological mapping and sampling we suggest that these smoking craters are the product of processes related to the regional and local geological setting in an ultramafic-hosted, off-axis location with abundant landslides, as well as off-axis gabbroic intrusions providing the heat for the hydrothermal convection cell

    Magmatic evolution of the Easter Microplate - Crough Seamount region (Southwest Pacific)

    No full text
    The Easter microplate-Crough Seamount region located between 25° S–116° W and 25° S–122° W consists of a chain of seamounts forming isolated volcanoes and elongated (100–200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065°), to the present day general spreading direction (N 100°) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26°30â€Č S–115° W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges ( 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1−2.5}, {(La/Sm)N = 0.4−1.2} and {(Zr/Y)N = 0.7−2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation (≈ 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25° S–118° W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed by earlier (7–10 Ma) hotspot magmatic activity which also created Easter Island

    Geology of an active hot spot: Teahitia-Mehetia region in the South Central Pacific

    No full text
    The Teahitia-Mehetia hot spot region located in the southeastern extension of the Society Islands chain, near 18° S–148° W consists of several active volcanoes. The distribution of recent volcanic activity correlates with seismic epicenters, and covers an area of more than 1000 km2. Intermittent volcanic activity has given rise to large (>1000 m high) and small (<500 m high) edifices composed of various types of flows. Several recent volcanic events have produced a suite of alkalic rocks ranging from ankaramites, through alkali basalts to trachy-phonolites. The presence of altered MORB-like tholeiites on one small seamount suggests that a different mantle source material was involved in forming some of the crust in this hot spot region

    The Pacific-Antarctic Ridge–Foundation Hotspot Interaction: a Case Study of a Ridge Approaching a Hotspot

    No full text
    The Foundation hotspot–Pacific-Antarctic Ridge (PAR) system is the best documented case of a fast spreading ridge approaching a hotspot and interacting with it. The morphology, crustal structure inferred from gravity anomalies and the chemical composition of the lavas of the axial area of the PAR show evidence of the influence of the hotspot, that is presently located roughly 35 km west of the spreading ridge axis. Along-axis variation in the Mantle Bouguer anomaly is about 28 mGal, corresponding to a crustal thickening of 1.5 km where the hotspot is nearer to the PAR. Anomalous ridge elevation is 650 m and the along-axis width of the chemical anomaly is 200 km. A comparison of these axial parameters with those derived for other ridge–hotspot systems, suggests that the amount of plume material reaching the ridge axis is smaller for the Foundation–PAR system. This implies a weaker connection between the plume and the ridge. Cumulative effects of a fast spreading rate and of a fast ridge–hotspot relative motion can be responsible for this weak plume–ridge flow. The flow from the hotspot may be less efficiently channelled towards the ridge axis when a fast ridge is rapidly moving towards a hotspot
    corecore