137 research outputs found

    Compaction Grouting for Seismic Retrofit of the North Torrey Pines Bridge

    Get PDF
    The North Torrey Pines Road Bridge in Del Mar, California was built in 1933 and is eligible for listing in the National Register of Historic Places. As a result of its outdated design and deterioration in a corrosive saline environment, the bridge was classified as structurally and seismically deficient and functionally obsolete. The historic significance of this bridge is important to the surrounding community and thus a seismic retrofit project was initiated with the goal of improving the expected seismic performance of the bridge while preserving its aesthetic and historic character. This paper provides a brief description of the overall retrofit design strategy, and detailed descriptions of the design of compaction grouting ground improvement to mitigate liquefaction and seismic slope instability hazards. Techniques used in the compaction grouting construction are presented, along with some particular construction challenges and solutions. Pre- and post-construction Standard Penetration Test data are compared and the improvements to the soil are discussed. The compaction grouting program was successful in achieving the ground improvement levels required by the design

    General Report - Session 6

    Get PDF
    This general report provides a summary of 40 accepted papers submitted to sessions 6a on ground improvement methods and session 6b on geoenvironmental engineering. The papers are contributed by the researchers and professionals from the United States and 15 other countries and they cover a wide range of topics based on laboratory experiments, field design, construction and monitoring, and mathematical modeling. A brief summary of each paper is provided under organized sections and the reader is referred to consult the full paper for details. Finally, the topics for discussion are listed

    TGF-β Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways

    Get PDF
    TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1−/− mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1−/− osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1−/− precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1−/− osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1−/− osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1−/− cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1−/− precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling

    Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFκB survival axis downstream of Death receptor-3

    Get PDF
    International audienceABSTRACT: BACKGROUND: Extravasation of circulating cancer cells is a key event of metastatic dissemination that is initiated by the adhesion of cancer cells to endothelial cells. It requires interactions between adhesion receptors on endothelial cells and their counter-receptors on cancer cells. Notably, E-selectin, a major endothelial adhesion receptor, interacts with Death receptor-3 present on metastatic colon carcinoma cells. This interaction confers metastatic properties to colon cancer cells by promoting the adhesion of cancer cells to endothelial cells and triggering the activation of the pro-migratory p38 and pro-survival ERK pathways in the cancer cells. In the present study, we investigated further the mechanisms by which the E-selectin-activated pathways downstream of DR3 confer a survival advantage to colon cancer cells. METHODS: Cell survival has been ascertained by using the WST-1 assay and by evaluating the activation of the PI3 kinase/NFκB survival axis. Apoptosis has been assayed by determining DNA fragmentation by Hoechst staining and by measuring cleavage of caspases-8 and -3. DR3 isoforms have been identified by PCR. For more precise quantification, targeted PCR reactions were carried out, and the amplified products were analyzed by automated chip-based microcapillary electrophoresis on an Agilent 2100 Bioanalyzer instrument. RESULTS: Interaction between DR3-expressing HT29 colon carcinoma cells and E-selectin induces the activation of the PI3K/Akt pathway. Moreover, p65/RelA, the anti-apoptotic subunit of NFκB, is rapidly translocated to the nucleus in response to E-selectin. This translocation is impaired by the PI3K inhibitor LY294002. Furthermore, inhibition of the PI3K/Akt pathway increases the cleavage of caspase 8 in colon cancer cells treated with E-selectin and this effect is still further increased when both ERK and PI3K pathways are concomitantly inhibited. Intriguingly, metastatic colon cancer cell lines such as HT29 and SW620 express higher levels of a splice variant of DR3 that has no trans-membrane domain and no death domain. CONCLUSION: Colon cancer cells acquire an increased capacity to survive via the activation of the PI3K/NFκB pathway following the stimulation of DR3 by E-selectin. Generation of a DR3 splice variant devoid of death domain can further contribute to protect against apoptosis

    Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia

    Get PDF
    Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages
    corecore