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dog may be a valid translational model patient for investi-
gating the crosstalk of the interconnected CEA and TGF-β 
networks.
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Abbreviations
AAV  Adeno-associated virus
Akt  Protein kinase B
Breg  Regulatory B-lymphocyte
CEA  Carcinoembryonic antigen (CEACAM5)
CEACAM  Carcinoembryonic antigen-related cell  

adhesion molecule
CEAR  Carcinoembryonic antigen receptor
CEARL  Carcinoembryonic antigen receptor, long 

isoform
CEARS  Carcinoembryonic antigen receptor, short 

isoform
EGF  Epidermal growth factor
EGFR  Epidermal growth factor receptor (ErbB1)
EMT  Epithelial-to-mesenchymal transition
FGF  Fibroblast growth factor
HER-2  Human epidermal growth factor receptor 2 

(ErbB2)
HGF  Hepatocyte growth factor
hnRNP M4  Heterogeneous nuclear ribonucleoprotein M4 

(CEAR)
IGFs  Insulin-like growth factors
IKK  Inhibitor of nuclear factor kappa-B kinase
IKKb  Inhibitor of nuclear factor kappa-B kinase 

subunit beta
IκB  Inhibitor of kappa-B

Abstract There is accumulating evidence that the trans-
forming growth factor beta (TGF-β) and nuclear factor 
kappa-B (NFκB) pathways are tightly connected and play 
a key role in malignant transformation in cancer. Immune 
infiltration by regulatory T- and B-lymphocytes (Tregs, 
Bregs) has recently gained increased attention for being an 
important source of TGF-β. There is a plethora of studies 
examining the pro-tumorigenic functions of carcinoembry-
onic antigen (CEA), but its receptor CEAR is far less stud-
ied. So far, there is a single connecting report that TGF-β 
also may signal through CEAR. The crosstalk between 
cancer tissues is further complicated by the expression of 
CEAR and TGF-β receptors in stromal cells, and implica-
tions of TGF-β in epithelial–mesenchymal transition. Fur-
thermore, tumor-infiltrating Tregs and Bregs may directly 
instruct cancer cells by secreting TGF-β binding to their 
CEAR. Therefore, both TGF-β and CEA may act syner-
gistically in breast cancer and cause disease progression, 
and NFκB could be a common crossing point between 
their signaling. CEAR, TGF-β1–3, TGF-β-R types I–III 
and NFκB class I and II molecules have an outstanding 
human–canine sequence identity, and only a canine CEA 
homolog has not yet been identified. For these reasons, the 
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IκBα  Inhibitor of kappa-B subunit alpha
MDCK  Madin–Darby canine kidney cell line
MEK  Mitogen-activated protein kinase kinase
NFκB  Nuclear factor kappa-B
PDGF  Platelet-derived growth factor
RelA  v-Rel avian reticuloendotheliosis viral  

oncogene homolog A
SMAD  SMA and MAD homolog
TAB1  TAK1-binding protein 1
TAK1  Transforming growth factor-activated 

kinase-1
TGF-β  Transforming growth factor beta
TGF-β-R  Transforming growth factor beta receptor
Treg  Regulatory T-lymphocyte

Introduction

The strategy of comparative oncology is to find homolo-
gous molecules, homologous signaling cascades and 
homologous immune mechanisms to cure cancer in both 
humans and pets according to the “One Health” princi-
ple [1]. Similar to humans, dogs spontaneously develop 
malignancies with comparable incidence and prevalence 
and hence represent a natural model for human cancer. 
For instance, a Swedish study on 80,000 insured female 
dogs reported that, dependent on higher age and breed, up 
to 13 % of female dogs had at least one mammary tumor, 
with an overall-case fatality of 6 % [2]. In humans, females 
in more highly developed areas have a cumulative risk of 
7.1 % of developing mammary cancer by the age of 75, 
with a mortality rate of 1.7 % [3]. Mammary carcinoma, 
among others, is thus a burden in both human and veteri-
nary medicines.

The rationale for favouring this tumor entity for com-
parative studies derives from the fact that it is wise to have 
access to primary lesions for monitoring tumor progression 
by caliper measurements. This facilitates the clinical inves-
tigations and also takes into consideration that only few 
centers have access to imaging facilities. Often more than 
one mamilla are affected in canine cancer patients and may 
be compared side by side.

It can further be expected that results from comparative 
oncology studies, investigating naturally occurring cancers 
due to distinct risk factors in distinct breeds, have a higher 
translational potential than studies with genetically highly 
homologous mouse strains [4]. For example, the epider-
mal growth factor receptor (EGFR) family members EGFR 
(ErbB1) and human epidermal growth factor receptor 2 
(HER-2 (ErbB2)) are molecules of outstanding homology 
between humans and dogs, and targeting of these mol-
ecules results in the same effects on signaling and cancer 
biology in both species [5, 6].

A more intricate situation was observed for the carci-
noembryonic antigen [CEA, also termed carcinoembryonic 
antigen-related cell adhesion molecule 5 (CEACAM5)], 
which represents a classical soluble as well as membrane-
expressed tumor marker in human clinical oncology. Serum 
levels of soluble human CEA correlate with disease progres-
sion [7], and its assessment is recommended in monitoring 
the treatment course of colorectal cancer in combination with 
other prognostic markers [8, 9]. However, CEA molecules 
are structurally and evolutionarily diverse between humans 
and canines [10, 11]. A direct CEA homolog in dogs has not 
yet been defined and represents “a missing link” (Table 1). In 
contrast, overexpression of CEA in humans has been known 
for over 20 years to play an important role in metastasis and 
cell motility [12] by acting as a ligand for E- and L-selectins 

Table 1  Interspecies amino acid sequence comparisons

Sequences were from UniProt (http://www.uniprot.org/uniprot/) and from the National Center for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov/protein). Sequences were aligned using a Needleman–Wunsch algorithm (http://www.ebi.ac.uk/Tools/psa/) with a BLO-
SUM 62 matrix; gap penalty and end penalty were defined as 10.0 and 0.5, respectively

Molecule Human Canine Sequence identity (%) Sequence similarity (%)

CEAR HNRPM_HUMAN XP_005633012.1 99.3 99.5

CEA (CEACAM5) CEAM5_HUMAN n.d. [20] – –

TGF-β-RI TGFR1_HUMAN F1PS63_CANFA 91.8 92.2

TGF-β-RII TGFR2_HUMAN F1PNA9_CANFA 87.4 90.3

TGF-β-RIII TGBR3_HUMAN F1PIG0_CANFA 88.6 93.0

TGF-β1 TGFB1_HUMAN TGFB1-CANFA 94.1 96.7

TGF-β2 TGFB2_HUMAN F1PKH0_CANFA 99.5 99.8

TGF-β3 TGFB3_HUMAN F1PR85_CANFA 88.4 89.5

NFκB1 NFκB1_HUMAN NFκB1_CANFA 91.0 94.2

NFκB2 NFκB2_HUMAN E2RLL2_CANFA 92.3 94.9

RelA TF65_HUMAN F1PCU1_CANFA 91.2 93.5

http://www.uniprot.org/uniprot/
http://www.ncbi.nlm.nih.gov/protein
http://www.ncbi.nlm.nih.gov/protein
http://www.ebi.ac.uk/Tools/psa/
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[13] and might have a signaling function probably by inter-
acting with the Wnt pathway [14]. Furthermore, vaccination 
with an adeno-associated virus (AAV)–CEA vector com-
bined with Toll-like receptor-9 or Toll-like receptor-7 ago-
nists in wild-type mice resulted in enhanced Th1-mediated 
immunity and protection from challenge with MC38 colon 
tumor cells expressing CEA, whereas the same CEA vac-
cines in CEA transgenic animals promoted tumor growth due 
to tolerance phenomena elicited by dendritic and myeloid 
cells [15]. Some CEA family members such as CEACAM6 
may adhere to and inhibit tumor-infiltrating cytotoxic T 
cells [16]. CEACAM1, CEACAM5 and CEACAM6 may 
be released from epithelial tumors in microvesicles, whereas 
tumor endothelia only contain CEACAM1 which has a 
receptor function for other CEACAMs, influences T cell 
behavior [17] and regulates the tumor matrix and microvas-
cularization [18]. Hence, CEA may affect the tumor and its 
stroma at the same time [19].

CEAR binds TGF‑β, a cytokine involved 
in tolerance induction toward malignant tissue

The scientific history of the carcinoembryonic antigen 
receptor (CEAR) is much more recent. Interestingly, 
CEAR showed an outstanding sequence identity of 99 % 
between the human and canine species [20] (Table 1). 
The great CEA-receptor homology of humans and dogs 
on the one hand and the lack of a precise canine CEA 
equivalent on the other hand are discrepancies and indi-
cate that there could be an alternative ligand. The CEAR 
was originally described in Kupffer cells and identified as 
the heterogeneous nuclear ribonucleoprotein M4 (hnRNP 
M4) [21]. Regarding oncology, it was later also found on 
colon cancer cells [22]. Moreover, its expression was sub-
sequently also detected in mice in the entire gastrointesti-
nal tract including liver and pancreas [23]. CEAR expres-
sion has been connected to inflammation in the liver [24]. 
In Kupffer cells, a full-length hnRNP M4 (CEARL) and a 
truncated form (CEARS), generated by alternative splic-
ing, were described [14]. The minimal structural element of 
human CEACAM5 interacting with hnRNP M4/CEAR was 
reduced to a peptide of eight amino acids [25].

Surprisingly, a recent study has shown that CEA not only 
signals via its specific receptor, CEAR, but can also bind to 
the receptor of the important immunomodulatory cytokine 
transforming growth factor beta (TGF-β, Fig. 1) [26].

TGF‑β sources and its function in the tumor

Three high-affinity membrane-bound receptors for TGF-β 
are known so far: type I, type II and type III. The classical 

TGF-β signaling, however, occurs via the heterotetra-
meric complex of 2 TGF-β-receptor (TGF-β-R) type I and 
2 TGF-β-receptor type II transmembrane receptors with 
serine/threonine kinase activity [27–29]. In the tumor 
microenvironment, TGF-β is most typically derived from 
human and canine Foxp3+ regulatory T cells (Tregs). It is 
well known that Tregs can thereby critically dampen anti-
tumor immunity and tolerize cytotoxic T cells [30–34]. 
More recently, intratumoral regulatory B cells (Bregs) have 
gained attention in human oncology [35, 36]. According 
to Olkhanud et al. [37], tumor-evoked Bregs should phe-
notypically resemble activated mature B2 cells (CD19+ 
CD25hi CD69hi). Lindner et al. [36] reported that intratu-
moral Bregs also express granzyme-B (stimulated by IL-21 
from Tregs) and a signature of CD19+CD38+CD1d+IgM
+CD147+, as well as including IL-10, CD25 and indoleam-
ine-2,3-dioxygenase. This population seems interesting 
as a source of TGF-β and for their capacity to suppress 
intratumoral CD8+ and CD4+ effector T cells. Bregs can 
even convert naïve CD4+CD25− T cells to Foxp3+ Tregs 
[37]. TGF-β, however, may also be derived from tumor 
stroma cells [19, 38], where it shapes the microenviron-
ment by interacting with growth factors (epidermal growth 
factor (EGF), platelet-derived growth factor (PDGF), 
fibroblast growth factor (FGF), hepatocyte growth factor 
(HGF), insulin-like growth factor (IGF) [39]), cytokines or 

Fig. 1  Interconnected networks of CEA and TGF-β signaling in 
cancer. The cancer cell is an autocrine source of CEA as well as of 
TGF-β which bind to their specific receptors, CEAR or TGF-β-
RI:RII, respectively; the latter signaling via the NFκB pathway. 
Recently, it has been recognized that CEA also signals via TGF-β-R 
and initiates the same biological effects [26]. Additionally, Tregs and 
Bregs, as well as stroma cells, participate in this network by secreting 
TGF-β. It remains open whether the reverse is the case, and TGF-β 
may also interfere with the CEAR pathway, which is much less 
defined
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chemokines, crosstalking to fibroblasts [40] and supporting 
the enrichment of endothelial cells, which again shape the 
extracellular matrix [41]. TGF-β promotes the loss of epi-
thelial markers such as E-cadherin and the accumulation of 
the mesenchymal marker vimentin in the process of epithe-
lial–mesenchymal transition (EMT) [42]. Importantly, in 
this case tumor stem cells themselves show an enrichment 
of mesenchymal markers and are a source of TGF-β. Most 
studies on EMT are done in mouse or human cancer mod-
els [43], but there are reports that EMT transition can be 
achieved by TGF-β in (normal) Madin–Darby canine kid-
ney (MDCK) cells [44].

Physiologically, TGF-β acts as a tumor suppressor, neg-
atively regulating cellular proliferation, but this is changed 
in the cancer microenvironment toward a tumor promoter 
function, where it mediates proliferation, migration, inva-
sion, EMT and metastasis, associated with high miR-181a 
expression, and altogether termed the TGF-β-paradox [45]. 
In this context, it is important to note that canines are much 
closer to the human species than murine animal models. 
The appearance of Tregs also negatively correlates with 
prognosis in dog cancer patients [46].

For instance, naive CD4+CD25−Foxp3− T cells can be 
converted to Foxp3+ Tregs when adoptively transferred 
into Rag−/− mice only in the presence of TGF-β-positive 
tumors [47]. Thus, the intratumoral milieu amplifies 
the cellular sources for even more immunosuppressive 
cytokines. It has been recently shown that elevated levels 
of TGF-β and IL-6 in the tumor microenvironment support 
Th17 cells and that the resulting inflammation was support-
ing the clinical development and progression of gastric can-
cer [48]. Although Li et al. have shown that CEA binds to 
TGF-β-R [26], it has not yet been investigated whether the 
reverse is true, and TGF-β (besides acting via its own TGF-
β-R) may crosstalk via CEAR, thereby imitating the tumor-
progressive properties of CEA. CEA modulates effector–
target interaction by binding to lymphocytes [49]. Only 
CEACAM1 expression was previously described in T cells 
[50], whereas the expression of CEACAM5 on T cells was 
excluded. Regarding this, we are not aware of investiga-
tions on the expression of CEAR on T- or B-lymphocytes.

TGF‑β signaling

In contrast to CEAR, the cellular signaling function of 
which has to the best of our knowledge not yet been 
reported, the signaling cascade for the TGF-β-R is well 
known. The nuclear factor kappa-B (NFκB) is a key master 
regulator in growth and survival [51, 52]. In normal cells, 
TGF-β leads to growth inhibition; in short: TGF-β binds to 
TGF-β-RII, activating TGF-β-RI and then phosphorylat-
ing the SMA and MAD homologs SMAD2 and SMAD3, 

which associate with SMAD4 and together translocate to 
the nucleus for transcription of genes. All of this is inhib-
ited by SMAD7 [53]. Interestingly, the TGF-β-R-initiated 
SMAD pathway was shown to target CEACAM5 (and 
CEACAM6) genes leading to CEA secretion as a mecha-
nism for proliferation in gastric cancer cells [54]. It will be 
interesting in the future to investigate whether a synergistic 
crosstalk between the CEA and TGF-β signaling cascades 
in cancer cells exists.

In human head and neck squamous cell carcinoma cell 
lines, Freudlsperger et al. [53] could further demonstrate 
that TGF-β signaling resulted in a sequential phosphoryla-
tion of the transforming growth factor-activated kinase-1 
(TAK1), inhibitor of nuclear factor kappa-B kinase (IKK), 
inhibitor of kappa-B subunit alpha (IκBα) and the v-rel 
avian reticuloendotheliosis viral oncogene homolog A 
(RelA); however, the crosstalk to CEA was not addressed 
in this study. Nor did this study address the consecutive 
activation of TAK1/mitogen-activated protein kinase kinase 
(MEK)/protein kinase B (AKT)/NFκB and SMAD path-
ways upon TGF-β stimulation as Gingery et al. [55] did in 
osteoclasts.

In human cancers, mutations in the TGF-β pathways 
(e.g., TGF-β-RII or SMAD4) are frequently observed [56]. 
A recent study has indicated that, although most tested 
colorectal cancer cells displayed an inactivated TGF-β 
signaling pathway, they actively secreted TGF-β acting on 
stromal cells and were thus driving metastasis [57]. In other 
cancer cell types, TGF-β signaling is intact, but aberrant 
NFκB activation and NFκB/RelA stimulate proliferation. 
In this respect, it should be emphasized that NFκB is con-
stitutively activated in a number of hematologic and solid 
tumors and is one of the major transcription factors associ-
ated with cancer progression, inhibition of apoptosis, lim-
itless replicative potential, tissue invasion and metastasis 
[58].

The TGF-β-R and NFκB pathways are connected via the 
TAK-1, which (independently, but parallel to SMAD acti-
vation) by phosphorylating IKK can directly stimulate the 
nuclear factor-κB (NFκB) pathway [55]. It is tempting to 
speculate that CEA may induce similar signals by interact-
ing with TGF-β-R [26]. TAK1 was expressed in head and 
neck cancers, where nuclear activation of RelA of the NFκB 
family also took place. TGF-β induced sequential phospho-
rylation of several targets including TAK1, IKK, IκBα and 
RelA; additionally, TAK1 again enhanced TGF-β induced 
NFκB activation [53]. In human neutrophils, a constitutive 
association of TAK1 and inhibitor of kappa-B (IκB) was 
recently reported, indicating a close association of these 
pathways in inflammatory cells [59]. Neil et al. could show 
that the TAK1-binding protein 1 (TAB 1) forms complexes 
with IκB kinase b (IKKb) resulting in stimulation of the 
TAK1:IKKb:RelA pathway. The authors concluded that this 
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axis, including the NFκB elements, is pivotal in the onco-
genic transformation of breast cancer [60]. The fact that 
NFκB plays a critical role in both intrinsic and acquired 
resistance against endocrine therapy in human breast cancer 
cells may additionally complicate the situation [61].

Conclusion

Generally, the dog represents an optimal model organism 
to study cancer biology in a comparative setting, as many 
genes represent a great degree of homology to their human 
counterparts [62]. Even with respect to noncoding RNAs, 
the significance of similarities between human and dog has 
recently been acknowledged [63]. Furthermore, the intrigu-
ing amino acid homogeneity among human and canine 
CEAR, TGF-β and TGF-β-R isoforms, NFκB and RelA are 
given in Table 1, indicating again an advantage of the dog 
patient in comparative oncology.

We propose that understanding of the crosstalk between 
CEA and TGF-β signaling toward NFκB as a key cancer reg-
ulator, as well as understanding of the Treg and Breg action 
in tumor tissue, should be extended, possibly with prognos-
tic value. The dog may be a relevant translational model to 
study these interactions, in line with the comparative oncol-
ogy strategy [64]. In the future, novel drugs may target the 
Achilles heel of both obviously interconnected networks.
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