236 research outputs found

    Decay rate measurement of the first vibrationally excited state of MgH+^+ in a cryogenic Paul trap

    Full text link
    We present a method to measure the decay rate of the first excited vibrational state of simple polar molecular ions being part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the ν|\nu=1,J1,J=1X1 \rangle_X towards the ν|\nu=0,J0,J=0X0 \rangle_X level in MgH+^+ by saturated laser excitation of the ν|\nu=0,J0,J=2X2 \rangle_X-ν|\nu=1,J1,J=1X1 \rangle_X transition followed by state selective resonance enhanced two-photon dissociation out of the ν|\nu=0,J0,J=2X2 \rangle_X level. The technique enables the determination of decay rates, and thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure

    Imaging of cell membrane topography using Tamm plasmon coupled emission

    Get PDF
    Imaging of the cell membrane topography is important for a clear understanding of various biological activities of cells. We propose a technique for imaging the cell membrane topography that uses a metal-photonic crystal structure instead of a glass-water interface used in conventional polarized total internal reflection fluorescence microscopy (pTIRFM) techniques. Through the metal-photonic crystal of the proposed technique, the fluorophore labels on the cell membrane can be excited by both the p- and s-polarized excitation light, and in each case, the p- and s-polarized radiation from the excited fluorophores can be separated to form an image. We calculate the images of the cell membrane topography that is fusing a granule using the proposed technique and pTIRFM. The image obtained by the proposed technique shows a much greater contrast with respect to the background than that of the image obtained by pTIRFM. We also find that the structural similarity index of the image obtained by the proposed technique to a reference image is ~77%, which is only ~16% for the image obtained by pTIRFM. The proposed technique will help to obtain a clearer and more accurate image of the cell membrane topography, and hence, a deeper understanding of different biological activities

    Photoaffinity cross-linking and unnatural amino acid mutagenesis reveal insights into calcitonin gene-related peptide binding to the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (CLR/RAMP1) complex

    Get PDF
    Calcitonin gene-related peptide (CGRP) binds to the complex of the calcitonin receptor-like receptor (CLR) with receptor activity-modifying protein 1 (RAMP1). How CGRP interacts with the transmembrane domain (including the extracellular loops) of this family B receptor remains unclear. In this study, a photoaffinity cross-linker, p-azido l-phenylalanine (azF), was incorporated into CLR, chiefly in the second extracellular loop (ECL2) using genetic code expansion and unnatural amino acid mutagenesis. The method was optimized to ensure efficient photolysis of azF residues near the transmembrane bundle of the receptor. A CGRP analogue modified with fluorescein at position 15 was used for detection of ultraviolet-induced cross-linking. The methodology was verified by confirming the known contacts of CGRP to the extracellular domain of CLR. Within ECL2, the chief contacts were I284 on the loop itself and L291, at the top of the fifth transmembrane helix (TM5). Minor contacts were noted along the lip of ECL2 between S286 and L290 and also with M223 in TM3 and F349 in TM6. Full length molecular models of the bound receptor complex suggest that CGRP sits at the top of the TM bundle, with Thr6 of the peptide making contacts with L291 and H295. I284 is likely to contact Leu12 and Ala13 of CGRP, and Leu16 of CGRP is at the ECL/extracellular domain boundary of CLR. The reduced potency, Emax, and affinity of [Leu16Ala]-human α CGRP are consistent with this model. Contacts between Thr6 of CGRP and H295 may be particularly important for receptor activation

    Glycomacropeptide:long-term use and impact on blood phenylalanine, growth and nutritional status in children with PKU

    Get PDF
    In phenylketonuria, casein glycomacropeptide (CGMP) requires modification with the addition of some essential and semi essential amino acids to ensure suitability as a protein substitute. The optimal amount and ratio of additional amino acids is undefined.AimA longitudinal, parallel, controlled study over 12months evaluating a CGMP (CGMP-AA2) formulation compared with phenylalanine-free L-amino acid supplements (L-AA) on blood Phe, Tyr, Phe:Tyr ratio, biochemical nutritional status and growth in children with PKU. The CGMP-AA2 contained 36mg Phe per 20g protein equivalent.MethodsChildren with PKU, with a median age of 9.2 y (5-16y) were divided into 2 groups: 29 were given CGMP-AA2, 19 remained on Phe-free L-AA. The CGMP-AA2 formula gradually replaced L-AA, providing blood Phe concentrations were maintained within target range. Median blood Phe, Tyr, Phe:Tyr ratio and anthropometry, were compared within and between the two groups at baseline, 26 and 52weeks. Nutritional biochemistry was studied at baseline and 26weeks only.ResultsAt the end of 52weeks only 48% of subjects were able to completely use CGMP-AA2 as their single source of protein substitute. At 52weeks CGMP-AA2 provided a median of 75% (30-100) of the total protein substitute with the remainder being given as L-AA. Within the CGMP-AA2 group, blood Phe increased significantly between baseline and 52weeks: [baseline to 26weeks; baseline Phe 270mol/L (170-430); 26weeks, Phe 300mol/L (125-485) p=0.06; baseline to 52weeks: baseline, Phe 270mol/L (170-430), 52weeks Phe 300mol/L (200-490),

    Receptor activity-modifying proteins 2 and 3 generate adrenomedullin receptor subtypes with distinct molecular properties

    Get PDF
    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins (RAMP) 2 and 3, respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMPs 2 and 3 on the activation and conformation of the CLR subunit of AM receptors we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors and determined the effects on cAMP signalling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modelling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket, and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function

    THE THREE-DIMENSIONAL EVOLUTION OF ION-SCALE CURRENT SHEETS: TEARING AND DRIFT-KINK INSTABILITIES IN THE PRESENCE OF PROTON TEMPERATURE ANISOTROPY

    Get PDF
    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection

    Whose knowledge, whose voices? Power, agency and resistance in disability studies for the global south

    Get PDF
    Meekosha (2011) maintains that research and theories about disability derive mainly from the global North. Disability Studies rarely include non-metropolitan thinkers. Even when they do, these studies tend to be seen as context specific, and the social theories which emanate from these studies are rarely refered to in research theorizing disability in the North. This chapter sets out to investigate how this one way transfer of knowledge affects the way Disability Studies is conceptualised - whose experiences are incorporated within these studies; and whose are left out. Multilateral debate and dialogue between Disability Studies academics and activists in different locations around the world would help add on to the knowledge already available in the field, while keeping others informed about what is taking place in 'similar' situations elsewhere.peer-reviewe

    Calcitonin receptor N-glycosylation enhances peptide hormone affinity by controlling receptor dynamics

    Get PDF
    The class B G protein-coupled receptor (GPCR) calcitonin receptor (CTR) is a drug target for osteoporosis and diabetes. N-glycosylation of asparagine 130 in its extracellular domain (ECD) enhances calcitonin hormone affinity with the proximal GlcNAc residue mediating this effect through an unknown mechanism. Here, we present two crystal structures of salmon calcitonin-bound, GlcNAc-bearing CTR ECD at 1.78 and 2.85 Å resolutions and analyze the mechanism of the glycan effect. The N130 GlcNAc does not contact the hormone. Surprisingly, the structures are nearly identical to a structure of hormone-bound, N-glycan-free ECD, which suggested that the GlcNAc might affect CTR dynamics not observed in the static crystallographic snapshots. Hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations revealed that glycosylation stabilized a β-sheet adjacent to the N130 GlcNAc and the N-terminal α-helix near the peptide-binding site, while increasing flexibility of the peptide-binding site turret loop. These changes due to N-glycosylation increased the ligand on-rate and decreased its off rate. The glycan effect extended to RAMP-CTR amylin receptor complexes and was also conserved in the related CGRP receptor. These results reveal that N-glycosylation can modulate GPCR function by altering receptor dynamics
    corecore