227 research outputs found

    Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia

    Get PDF
    Late twentieth-century instrumental records reveal a persistent southward shift of the Southern Westerly Winds during austral summer and autumn associated with a positive trend of the Southern Annular Mode (SAM) and contemporaneous with glacial recession, steady increases in atmospheric temperatures and CO2 concentrations at a global scale. However, despite the clear importance of the SAM in the modern/future climate, very little is known regarding its behaviour during pre-Industrial times. Here we present a stratigraphic record from Lago Cipreses (51S), southwestern Patagonia, that reveals recurrent B200-year long dry/warm phases over the last three millennia, which we interpret as positive SAM-like states. These correspond in timing with the Industrial revolution, the Mediaeval Climate Anomaly, the Roman and Late Bronze Age Warm Periods and alternate with cold/wet multicentennial phases in European palaeoclimate records. We conclude that SAM-like changes at centennial timescales in southwestern Patagonia represent in-phase interhemispheric coupling of palaeoclimate over the last 3,000 years through atmospheric teleconnections.Fil: Moreno, Patricio. Universidad de Chile; ChileFil: Vilanova, Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Villa Martinez, R.. Universidad de Chile; ChileFil: Garreaud, R. D.. Universidad de Chile; ChileFil: Rojas, M.. Universidad de Chile; ChileFil: De Pol Holz, R.. Universidad de Chile; Chil

    Meteorological observations on the northern Chilean coast during VOCALS-REx

    Get PDF
    Surface coastal observations from two automatic weather stations at Paposo (~25° S) and radiosonde observations at Paposo and Iquique (~20° S) were carried out during VOCALS-REx (VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment). Within the coastal marine boundary layer (MBL), sea–land breezes are superimposed on the prevailing southerlies, resulting in light northeasterly winds from midnight to early morning and strong southwesterlies in the afternoon. The prevailing northerlies above the MBL and below the top of the Andes are modulated by the onshore-offshore (zonal) flow forced by the diurnal cycle of surface heating/cooling along the western slope of the Andes. The daytime phase of this diurnal cycle is consistent with an enhanced afternoon coastal subsidence manifested in afternoon warming near the top of the subsidence inversion (~1.8 K at 800 hPa), lowering (~130 m) of its base (top of the MBL), and clearing of coastal Sc (stratocumulus) clouds. Results from a numerical simulation of the atmospheric circulation in a mean zonal cross section over the study area capture the afternoon zonal wind divergence and resulting subsidence of about 2 cm s−1 along a narrow (~10 km) coastal strip maximizing at around 800 hPa. Day-to-day variability in the MBL depth during VOCALS-REx shows sub-synoptic oscillations, aside from two major disruptions in connection with a deep trough and a cutoff low, as described elsewhere. These oscillations are phase-locked to those in sea-level pressure and afternoon alongshore southerlies, as found in connection with coastal lows farther south. From 24-h forward trajectories issued from significant points at the coast and inland at the extremes of the diurnal cycle, it can be concluded that the strong mean daytime Andean pumping prevents any possibility of continental sulfur sources from reaching the free troposphere above the Sc cloud deck in at least a one-day timescale, under mean conditions. Conversely, coastal sources could contribute with sulfur aerosols preferentially in the morning, provided that the weak daytime inland flow becomes partially blocked by the coastal terrain

    VOCALS-CUpEx: the Chilean Upwelling Experiment

    Get PDF
    This is the publisher's version, also available electronically from http://www.atmos-chem-phys.net/11/2015/2011/acp-11-2015-2011.html.The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable equatorward flow (southerly winds) to downwelling-favorable poleward flow (northerly winds). In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean-state and transient features

    VOCALS-CUpEx: the Chilean Upwelling Experiment

    Get PDF
    This is the publisher's version, also available electronically from http://www.atmos-chem-phys.net/11/2015/2011/acp-11-2015-2011.html.The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) was a major field experiment conducted in spring of 2008 off southern Peru and northern Chile, aimed at better understanding the coupled climate systems of the southeast Pacific. Because of logistical constrains, the coastal area around 30° S was not sampled during VOCALS-REx. This area not only marks the poleward edge of the subtropical stratocumulus cloud regime (thus acting as a source of transient disturbances) but is also one of the most active upwelling centers and source of surface ocean kinetic energy along the Chilean coast. To fill such an observational gap, a small, brief, but highly focused field experiment was conducted in late spring 2009 in the near-shore region around 30° S. The Chilean Upwelling Experiment (CUpEx) was endorsed by VOCALS as a regional component. CUpEx included long-term monitoring, an intensive two-week field campaign and off-shore research flights. Our goal was to obtain an atmospheric/oceanic dataset with enough temporal and spatial coverage to be able to document (a) the mean diurnal cycles of the lower-troposphere and upper-ocean in a region of complex topography and coastline geometry, and (b) the ocean-atmosphere response to the rapid changes in coastal winds from strong, upwelling-favorable equatorward flow (southerly winds) to downwelling-favorable poleward flow (northerly winds). In this paper we describe the measurement platforms and sampling strategy, and provide an observational overview, highlighting some key mean-state and transient features

    Testate amoebae as a proxy for reconstructing Holocene water table dynamics in southern Patagonian peat bogs

    Get PDF
    Funded by Natural Environment Research Council. Grant Numbers: NE/I022809/1, NE/I022981/1, NE/I022833/1, NE/I023104/1 Ricardo Muza and the Wildlife Conservation Society Karukinka Park Acknowledgements This work was supported by the Natural Environment Research Council (grant numbers NE/I022809/1, NE/I022981/1, NE/I022833/1 and NE/I023104/1). We thank Ricardo Muza and the Wildlife Conservation Society (WCS) Karukinka Park rangers for facilitating access to Karukinka Park. We also thank François De Vleeschouwer, Gaël Le Roux, Heleen Vanneste, Sébastien Bertrand, Zakaria Ghazoui and Jean-Yves De Vleeschouwer for fieldwork assistance. Nelson Bahamonde (INIA, Punta Arenas, Chile) and Ernesto Teneb (UMag, Punta Arenas, Chile) provided logistical support for the fieldwork in Chile. Dr Andrea Coronato (CADIC, Ushuaia) kindly provided logistical support for the research in Argentina. Thanks to Jenny Johnston for cartography, David Jolley for assistance in microscopic photography and Audrey Innes for laboratory assistance. We highly appreciate reviews by Matt Amesbury and an anonymous reviewer. R.P. is supported by an Impact Fellowship from the University of Stirling.Peer reviewedPublisher PD

    Central Santa Catarina coastal dunefields chronology and their relation to relative sea level and climatic changes

    Get PDF
    During the past decades, there have been contrarian explanations for the formation and stabilization of coastal dunefields: while many authors believe the dunes formation would be enhanced by falling sea level, others argue that a rising or stable sea level context would be favorable. For Brazilian coastal dunefields, the second hypothesis seems to be more consistent with the luminescence ages found so far; however, most of these data were obtained without using the SAR protocol. Another point of concern is the role of climate change in the aeolian system, which is still not very clear. The aim of this paper is to try to clarify these two questions. To this end, five coastal dunefields were selected in central Santa Catarina coast. The remote sensing and dating results allowed the discrimination and mapping of at least four aeolian generations. Their age distribution in relation to the global curve of relative sea level variation during the Late Pleistocene allows us to suggest that the formation of Aeolian dunefields in the coastal context is supported by stable relative sea level. However, relative sea level is not the only determinant for the formation and preservation of the aeolian coastal dunes. Evidences of climatic control indicate that the initiation of dunefields would be favored by periods of less humidity while their stabilization would occur preferably during the periods of rain intensification, connected to monsoon activity

    Seagrass and submerged aquatic vegetation (VAS) habitats off the Coast of Brazil: state of knowledge, conservation and main threats

    Get PDF
    Seagrass meadows are among the most threatened ecosystems on earth, raising concerns about the equilibrium of coastal ecosystems and the sustainability of local fisheries. The present review evaluated the current status of the research on seagrasses and submerged aquatic vegetation (SAV) habitats off the coast of Brazil in terms of plant responses to environmental conditions, changes in distribution and abundance, and the possible role of climate change and variability. Despite an increase in the number of studies, the communication of the results is still relatively limited and is mainly addressed to a national or regional public; thus, South American seagrasses are rarely included or cited in global reviews and models. The scarcity of large-scale and long-term studies allowing the detection of changes in the structure, abundance and composition of seagrass habitats and associated species still hinders the investigation of such communities with respect to the potential effects of climate change. Seagrass meadows and SAV occur all along the Brazilian coast, with species distribution and abundance being strongly influenced by regional oceanography, coastal water masses, river runoff and coastal geomorphology. Based on these geomorphological, hydrological and ecological features, we characterised the distribution of seagrass habitats and abundances within the major coastal compartments. The current conservation status of Brazilian seagrasses and SAV is critical. The unsustainable exploitation and occupation of coastal areas and the multifold anthropogenic footprints left during the last 100 years led to the loss and degradation of shoreline habitats potentially suitable for seagrass occupation. Knowledge of the prevailing patterns and processes governing seagrass structure and functioning along the Brazilian coast is necessary for the global discussion on climate change. Our review is a first and much-needed step toward a more integrated and inclusive approach to understanding the diversity of coastal plant formations along the Southwestern Atlantic coast as well as a regional alert the projected or predicted effects of global changes on the goods and services provided by regional seagrasses and SAV
    corecore