1,305 research outputs found

    Zirconium, Barium, Lanthanum and Europium Abundances in Open Clusters

    Full text link
    We present an analysis of the s-process elements Zr, Ba, and La and the r-process element Eu in a sample of 50 stars in 19 open clusters. Stellar abundances of each element are based on measures of a minimum of two lines per species via both equivalent width and spectrum synthesis techniques. We investigate cluster mean neutron-capture abundance trends as a function of cluster age and location in the Milky Way disk and compare them to results found in other studies in the literature. We find a statistically significant trend of increasing cluster [Ba/Fe] as a function of decreasing cluster age, in agreement with recent findings for other open cluster samples, supporting the increased importance of low-mass asymptotic giant branch stars to the generation of s-process elements. However, the other s-process elements, [La/Fe] and [Zr/Fe], do not show similar dependences, in contrast to theoretical expectations and the limited observational data from other studies. Conversely, cluster [Eu/Fe] ratios show a slight increase with increasing cluster age, although with marginal statistical significance. Ratios of [s/r]-process abundances, [Ba/Eu] and [La/Eu], however, show more clearly the increasing efficiency of s-process relative to r-process enrichment in open cluster chemical evolution, with significant increases among younger clusters. Last, cluster neutron-capture element abundances appear to be independent of Galactocentric distance. We conclude that a homogeneous analysis of a larger sample of open clusters is needed to resolve the apparent discrepant conclusions between different studies regarding s-process element abundance trends with age to better inform models of galactic chemical evolution.Comment: 24 pages, 13 figures, 10 tables; published in The Astronomical Journa

    Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels

    Get PDF
    Monte Carlo algorithms often aim to draw from a distribution π\pi by simulating a Markov chain with transition kernel PP such that π\pi is invariant under PP. However, there are many situations for which it is impractical or impossible to draw from the transition kernel PP. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace PP by an approximation P^\hat{P}. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how 'close' the chain given by the transition kernel P^\hat{P} is to the chain given by PP. We apply these results to several examples from spatial statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain

    Identification of key residues that regulate the interaction of kinesins with microtubule ends

    Get PDF
    Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end‐residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin‐13, which depolymerises microtubules, are introduced into Kinesin‐1, a walking kinesin with no effect on microtubule dynamics, the end‐residence time is increased up to several‐fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding

    A Chemical Abundance Study of 10 Open Clusters Based on WIYN-Hydra Spectroscopy

    Full text link
    We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355 and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range Rgc~9-13 kpc, the approximate location of the transition between the inner and outer disk. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster Rgc, age, and [Fe/H]. The [Fe/H] distribution appears to decrease with increasing Rgc to a distance of ~12 kpc, and then flattens to a roughly constant value in the outer disk. Cluster average element [X/Fe] ratios appear to be independent of Rgc, although the picture for [O/Fe] is more more complicated by a clear trend of [O/Fe] with [Fe/H] and sample incompleteness. Other than oxygen, no other element [X/Fe] exhibits a clear trend with [Fe/H]; likewise, there does not appear to be any strong correlation between abundance and cluster age. We divided clusters into different age bins to explore temporal variations in the radial element distributions. The radial metallicity gradient appears to have flattened slightly as a function of time, as found by other studies. There is also indication that the transition from the inner disk to the outer disk occurs at different Galactocentric radii for different age bins. (Abridged.)Comment: 35 pages, 12 figures, 18 tables; published in The Astronomical Journal (http://stacks.iop.org/1538-3881/142/59

    NGC 7789: An Open Cluster Case Study

    Full text link
    We have obtained high-resolution spectra of 32 giants in the open cluster NGC 7789 using the Wisconsin-Indiana-Yale-NOAO Hydra spectrograph. We explore differences in atmospheric parameters and elemental abundances caused by the use of the linelist developed for the Gaia-ESO Survey (GES) compared to one based on Arcturus used in our previous work. [Fe/H] values decrease when using the GES linelist instead of the Arcturus-based linelist; these differences are probably driven by systematically lower (~ -0.1 dex) GES surface gravities. Using the GES linelist we determine abundances for 10 elements - Fe, Mg, Si, Ca, Ti, Na, Ni, Zr, Ba, and La. We find the cluster's average metallicity [Fe/H] = 0.03 +/- 0.07 dex, in good agreement with literature values, and a lower [Mg/Fe] abundance than has been reported before for this cluster (0.11 +/- 0.05 dex). We also find the neutron-capture element barium to be highly enhanced - [Ba/Fe] = +0.48 +/- 0.08 - and disparate from cluster measurements of neutron-capture elements La and Zr (-0.08 +/- 0.05 and 0.08 +/- 0.08, respectively). This is in accordance with recent discoveries of supersolar Ba enhancement in young clusters along with more modest enhancement of other neutron-capture elements formed in similar environments.Comment: 15 pages, 9 figures, Table 1 typo fixe

    Iron abundances from high-resolution spectroscopy of the open clusters NGC 2506, NGC 6134, and IC 4651

    Full text link
    This is the first of a series of papers devoted to derive the metallicity of old open clusters in order to study the time evolution of the chemical abundance gradient in the Galactic disk. We present detailed iron abundances from high resolution (R~40000) spectra of several red clump and bright giant stars in the open clusters IC 4651, NGC 2506 and NGC 6134. We observed 4 stars of NGC 2506, 3 stars of NGC 6134, and 5 stars of IC 4651 with the FEROS spectrograph at the ESO 1.5 m telescope; moreover, 3 other stars of NGC 6134 were observed with the UVES spectrograph on Kueyen (VLT UT2). After excluding the cool giants near the red giant branch tip (one in IC 4651 and one in NGC 2506), we found overall [Fe/H] values of -0.20 +/- 0.01, rms = 0.02 dex (2 stars) for NGC 2506, +0.15 +/- 0.03, rms = 0.07 dex (6 stars) for NGC 6134, and +0.11 +/- 0.01, rms = 0.01 dex (4 stars) for IC 4651. The metal abundances derived from line analysis for each star were extensively checked using spectrum synthesis of about 30 to 40 Fe I lines and 6 Fe II lines. Our spectroscopic temperatures provide reddening values in good agreement with literature data for these clusters, strengthening the reliability of the adopted temperature and metallicity scale. Also, gravities from the Fe equilibrium of ionization agree quite well with expectations based on cluster distance moduli and evolutionary masses.Comment: 13 pages, 7 figures, uses aa.cls, accepted for publication on Astronomy & Astrophysic

    Enabling internal electronic circuitry within additively manufactured metal structures - The effect and importance of inter-laminar topography

    Get PDF
    Purpose: This paper aims to explore the potential of ultrasonic additive manufacturing (UAM) to incorporate the direct printing of electrical materials and arrangements (conductors and insulators) at the interlaminar interface of parts during manufacture to allow the integration of functional and optimal electrical circuitries inside dense metallic objects without detrimental effect on the overall mechanical integrity. This holds promise to release transformative device functionality and applications of smart metallic devices and products. Design/methodology/approach: To ensure the proper electrical insulation between the printed conductors and metal matrices, an insulation layer with sufficient thickness is required to accommodate the rough interlaminar surface which is inherent to the UAM process. This in turn increases the total thickness of printed circuitries and thereby adversely affects the integrity of the UAM part. A specific solution is proposed to optimise the rough interlaminar surface through deforming the UAM substrates via sonotrode rolling or UAM processing. Findings: The surface roughness (Sa) could be reduced from 4.5 to 4.1 µm by sonotrode rolling and from 4.5 to 0.8 µm by ultrasonic deformation. Peel testing demonstrated that sonotrode-rolled substrates could maintain their mechanical strength, while the performance of UAM-deformed substrates degraded under same welding conditions ( approximately 12 per cent reduction compared with undeformed substrates). This was attributed to the work hardening of deformation process which was identified via dual-beam focussed ion beam–scanning electron microscope investigation. Originality/value: The sonotrode rolling was identified as a viable methodology in allowing printed electrical circuitries in UAM. It enabled a decrease in the thickness of printed electrical circuitries by ca. 25 per cent
    corecore