226 research outputs found

    Conical seat shut off valve

    Get PDF
    A valve includes a housing defining a bore having an inlet and extending along a longitudinal axis. A head is attached to the housing and defines a head passage having an outlet. A piston is disposed within the bore and includes a piston passage extending through the piston along the longitudinal axis. The piston is moveable between a closed position in which a sealing end of the piston abuts a seat of the head to close fluid communication through the piston passage and an open position in which the sealing end of the piston is axially spaced along the longitudinal axis from the seat of the head to permit fluid communication through the piston passage between the inlet and the outlet. The housing defines an equalizing chamber in fluid communication with the head passage for damping movement of the piston

    Improved Relief Valve Would Be Less Susceptible to Failure

    Get PDF
    The balanced-piston relief valve with side vented reaction cavity has been proposed as an improved alternative to a conventional high-pressure, high-flow relief valve. The proposed valve would be less susceptible to failure. A typical conventional high-pressure, high-flow relief valve contains a piston that is exposed to the upstream pressure across the full valve-seat diameter and is held against the valve seat and the upstream pressure by a large spring. In the event of an increase in upstream pressure to a level above the valve set point (the pressure above which the valve opens), the opening force on the piston can be so large that the piston becomes accelerated to a speed high enough that the ensuing hard impact of the piston within the valve housing results in failure of the valve. For a given flow cross section, the proposal would significantly reduce the force, thereby reducing susceptibility to failure. A basic version of the proposed balanced-piston relief valve with side vented reaction cavity is described

    A Prograding Margin during Global Sea-Level Maxima: An Example from Mahajanga Basin, Northwest Madagascar

    Get PDF
    The Mesozoic shelf margin in the Mahajanga Basin, northwest Madagascar, provides an example where inherited palaeobathymetry, coupled with sea-level changes, high sediment supply and fluctuations in accommodation influenced the stacking patterns and geometry of clinoforms that accreted onto a passive rifted margin. Two-dimensional (2D) seismic profiles are integrated with existing field data and geological maps to study the evolution of the margin. The basin contains complete records of transgression, highstand, regression and lowstand phases that took place from Jurassic to Cretaceous. Of particular interest is the Cretaceous, Albian to Turonian (ca. 113-93 Ma), siliciclastic shelf margin that prograded above a drowned Middle Jurassic carbonate platform. The siliciclastic phase of the shelf margin advanced ca. 70 km within ca. 20 My, and contains 10 distinct clinoforms mapped along a 2D seismic reflection data set. The clinoforms show a progressive decrease in height and slope length, and a fairly constant slope gradient through time. The successive shelf edges begin with a persistent flat to slightly downward-directed shelf-edge trajectory that changes to an ascending trajectory at the end of clinoform progradation. The progressive decrease in clinoform height and slope length is attributed to a decrease in accommodation. The prograding margin is interpreted to have formed when siliciclastic input increased as eastern Madagascar was uplifted. This work highlights the importance of sediment supply and inherited palaeobathymetry as controls on the evolution of shelf margins and it provides a new understanding of the evolution of the Mahajanga Basin during the Mesozoic

    Spectrally-resolved Imaging of the Transverse Modes in Multimode VCSELs

    Get PDF
    Vertical-cavity surface-emitting lasers (VCSELs) enable a range of applications such as data transmission, trace sensing, atomic clocks, and optical mice. For many of these applications, the output power and beam quality are both critical (i.e. high output power with good beam quality is desired). Multi-mode VCSELs offer much higher power than single-mode devices, but this comes at the expense of lower beam quality. Directly observing the resolved mode structure of multi-mode VCSELs would enable engineers to better understand the underlying physics and help them to develop multi-mode devices with improved beam quality. In this work, a low-cost, high-resolution (\u3c3 \u3epm) Echelle grating spectrometer system is used to map the two-dimensional VCSEL near-field emission profile. The system spectrally disperses the VCSEL beam and images it with high magnification onto a CMOS camera. The narrow spectral content of each LP mode allows direct observation of the modal content of the VCSEL

    Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Get PDF
    Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities

    NASA Rocket Propulsion Test Replacement Effort for Oxygen System Cleaner - Hydrochlorofluorocarbon (HCFC) 225

    Get PDF
    Gaseous and liquid oxygen are extremely reactive materials used in bipropellant propulsion systems. Both flight and ground oxygen systems require a high level of cleanliness to support engine performance, testing, and prevent mishaps. Solvents used to clean and verify the cleanliness of oxygen systems and supporting test hardware must be compatible with the system's materials of construction and effective at removing or reducing expected contaminants to an acceptable level. This paper will define the philosophy and test approach used for evaluating replacement solvents for the current Marshall Space Flight Center/Stennis Space Center baseline HCFC225 material that will no longer be available for purchase after 2014. MSFC/SSC applications in cleaning / sampling oxygen propulsion components, support equipment, and test system were reviewed then candidate replacement cleaners and test methods selected. All of these factors as well as testing results will be discussed

    Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments

    Get PDF
    International audienceThe harmonic balance method Í‘HBMÍ’ was originally developed for finding periodic solutions of electronical and mechanical systems under a periodic force, but has been adapted to self-sustained musical instruments. Unlike time-domain methods, this frequency-domain method does not capture transients and so is not adapted for sound synthesis. However, its independence of time makes it very useful for studying any periodic solution, whether stable or unstable, without care of particular initial conditions in time. A computer program for solving general problems involving nonlinearly coupled exciter and resonator, HARMBAL, has been developed based on the HBM. The method as well as convergence improvements and continuation facilities are thoroughly presented and discussed in the present paper. Applications of the method are demonstrated, especially on problems with severe difficulties of convergence: the Helmholtz motion Í‘square signalsÍ’ of single-reed instruments when no losses are taken into account, the reed being modeled as a simple spring

    Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach

    Get PDF
    Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on th

    How Much Do U.S. University Students Know, And Want To Know, About Sustainability And Green Building? The Findings Of A Survey, And Possible Implications For General Elective Curricula.

    Get PDF
    Using the survey approach, this investigation examined the attitudes and interest of college students at two universities in different geographic locations within the United States. Approximately 24,000 students from all disciplines and majors at Weber State University (WSU) in Utah, and 4,000 at Purdue University in Indiana, were invited to participate in a study to determine current knowledge, familiarity, and interest in topics within the sustainability and Green Building educational arena. The goal of this study was to determine what students already know, would like to know, and how much interest there would be in developing a general elective course offered to students from all majors on sustainability in the built environment. Currently, neither university offers such curriculum generally: it is limited to students in the architecture, construction management, or engineering programs to receive general elective credit towards graduation. The theory is that students from all disciplines are interested and would take a general elective course based on Green Building in the built environment concepts. The title of the course could potentially be; “How to Green Your Home”. Based upon the survey results and analysis, several outcomes suggest that students across all majors are indeed interested in greening their built environment. The data highlights what is currently understood, as well as areas in which education may be lacking. This contribution includes an outline of teaching implications as well as recommendations as to what, how, and where Green Building should be taught at the college level. The findings of this study suggest that a general elective course, multi-disciplinary in its approach, is both needed and wanted by university students
    • …
    corecore