
Rose-Hulman Institute of Technology
Rose-Hulman Scholar

Rose-Hulman Undergraduate Research Publications

6-10-2015

Spectrally-resolved Imaging of the Transverse
Modes in Multimode VCSELs
Stephan A. Misak
Rose-Hulman Institute of Technology

Dan G. Dugmore
Rose-Hulman Institute of Technology

Kirsten A. Middleton
Rose-Hulman Institute of Technology

Evan R. Hale
Rose-Hulman Institute of Technology

Kelly R. Farner
Rose-Hulman Institute of Technology

See next page for additional authors

Follow this and additional works at: http://scholar.rose-hulman.edu/undergrad_research_pubs

Part of the Computer Sciences Commons, Engineering Physics Commons, Life Sciences
Commons, and the Semiconductor and Optical Materials Commons

This Article is brought to you for free and open access by Rose-Hulman Scholar. It has been accepted for inclusion in Rose-Hulman Undergraduate
Research Publications by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

Recommended Citation
Misak, Stephan A.; Dugmore, Dan G.; Middleton, Kirsten A.; Hale, Evan R.; Farner, Kelly R.; Choquette, Kent D.; and Leisher, Paul
O., "Spectrally-resolved Imaging of the Transverse Modes in Multimode VCSELs" (2015). Rose-Hulman Undergraduate Research
Publications. 8.
http://scholar.rose-hulman.edu/undergrad_research_pubs/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Rose-Hulman Institute of Technology: Rose-Hulman Scholar

https://core.ac.uk/display/268181381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholar.rose-hulman.edu?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/undergrad_research_pubs?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/undergrad_research_pubs?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/200?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/290?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.rose-hulman.edu/undergrad_research_pubs/8?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu


Authors
Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette,
and Paul O. Leisher

This article is available at Rose-Hulman Scholar: http://scholar.rose-hulman.edu/undergrad_research_pubs/8

http://scholar.rose-hulman.edu/undergrad_research_pubs/8?utm_source=scholar.rose-hulman.edu%2Fundergrad_research_pubs%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


Spectrally-resolved Imaging of the Transverse Modes  
in Multimode VCSELs 

 
Stephen M. Misak1, Dan G. Dugmore1, Kirsten A. Middleton1, Evan R. Hale1,  

Kelly R. Farner1, Kent D. Choquette2, and Paul O. Leisher1,*  
 

1 Rose-Hulman Institute of Technology, 5500 Wabash Ave., Terre Haute, IN 47803, USA 
2 University of Illinois at Urbana-Champaign, 208 N. Wright St., Urbana, IL 61801, USA 

ABSTRACT   

Vertical-cavity surface-emitting lasers (VCSELs) enable a range of applications such as data transmission, trace 
sensing, atomic clocks, and optical mice. For many of these applications, the output power and beam quality are both 
critical (i.e. high output power with good beam quality is desired). Multi-mode VCSELs offer much higher power 
than single-mode devices, but this comes at the expense of lower beam quality. Directly observing the resolved mode 
structure of multi-mode VCSELs would enable engineers to better understand the underlying physics and help them 
to develop multi-mode devices with improved beam quality. In this work, a low-cost, high-resolution (<3 pm) Echelle 
grating spectrometer system is used to map the two-dimensional VCSEL near-field emission profile. The system 
spectrally disperses the VCSEL beam and images it with high magnification onto a CMOS camera. The narrow 
spectral content of each LP mode allows direct observation of the modal content of the VCSEL.  

Keywords: multi-mode VCSEL, Echelle grating spectrometer, LP mode 
 

1. MOTIVATION  
Semiconductor lasers emit light perpendicular to their surface while VCSELs are built with layers of distributed Bragg 
reflectors (DBRs) and a central active region containing multiple quantum wells. The photons are emitted by pumping 
current into a ring electrode in the active region between oppositely doped DBR layers, forming a p-n junction diode. 
While the range of possible emission wavelengths is limited by the materials used in the VCSEL design, the exact 
lasing frequency is selected by the design of the resonant cavity (in all three dimensions). VCSELs designed with a 
larger mode areas result in higher power, however beam quality is degraded due to multi-mode operation in both the 
lateral and vertical direction. 
 
Directly observing the resolved 2D mode structure of multi-mode VCSELs would help engineers develop a better 
understanding of the underlying physics in order to design multi-mode devices with improved beam quality. The 
typical near-field emission profile of a VCSEL is a 2D image which shows the overall intensity pattern arising from 
the interaction of all lasing modes, each operating at a slightly different wavelength. In a manner similar to the 1D 
case for edge-emitting lasers, the observed near-field mode profile is simply the summation of the individual 
eigenmodes of the 2D VCSEL cavity. 
 

 
Figure 1. Example near-field image profile of a multimode VCSEL 



 
 

 
 

 
Figure 2. Theoretical images of the separated VCSEL modes. 

Further research with VCSELs is advantageous because of their benefits over edge-emitting lasers. VCSEL’s vertical 
wafer design makes them more efficient and inexpensive. Their ability to be integrated into an array also presents a 
key advantage. With applications in optical communications, interconnects, neutral networks, and signal processing, 
developing a greater understanding of the multi-mode VCSELs can lead to improvements in several industries. Multi-
mode VCSELs are typically avoided because of mode competition [2]. With more knowledge from research, the 
instability in multi-mode VCSELs can be reduced, improving beam quality and increasing the possibilities for VCSEL 
technology. 
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2. EXPERIMENT 
Imaging the transverse modes of a multi-mode VCSEL was accomplished using a custom benchtop high resolution 
Echelle spectrometer. Figure 3 illustrates the design. The beam is magnified, collimated, dispersed, and reimaged. A 
13.86 mm focal length asphere and a 200 mm focal length spherical lens are used to magnify the VCSEL beam and 
image it at the diffraction limit. After passing through a periscope, the beam is collimated with a 500 mm focal length 
lens both before and after diffracting off the grating. An Echelle grating with 79 grooves/mm and a 75° blaze angle is 
used in the Littrow configuration to disperse the VCSEL near-field and resolve the mode content. The beam splitter 
is used to redirect the dispersed beam to the CMOS camera. The slit which is normally at the image plane was removed 
in order to view the entire 2D mode structure of the VCSEL. A single pass off the grating was used when imaging the 
modes, but a mirror could be used to improve the resolution by double passing the grating. For this experiment, a 
double pass was not needed to acquire the images of the VCSEL modes. A polarizer and a second magnifying lens 
with f=50mm were used to observe the effect of polarization and to improve image size.  
  



 
 

 
 

 

 
Figure 3. (Top) Modified Spectrometer Diagram. (Bottom) Modified Spectrometer Overview.  

 
The VCSEL used for all of the tests was a packaged multi-mode laser diode. It was manufactured with a 15.1 μm 
oxide aperture, and it features a flat window and monitor photodiode. Typical power and wavelength were rated at 
1.85mW (If = 8mA@RT) and 845 nm accordingly. The measured spectrum and output power data are as shown in 
Figure 4. The optical power was measured with a switchable gain, amplified silicon detector. The spectrum data was 
gathered at a resolution of 0.02 nm.  
 

Periscope 



 
 

 
 

   
Figure 4. (Left) Optical output power vs. input current. (Right) Logarithmic scale spectrum at 8 mA.  

 
Theoretical calculations were also made in order to compare the experimental data with an expected outcome. 
MATLAB software was used to generate the theoretical plots based on the equations governing the LP modes of 
guided waves. The software used to plot the theoretical VCSEL mode structure was adapted from [6]. The X parameter 
limit was defined using the V parameter, defined in Eq. (2-1) [3, 4].  
 

𝑉𝑉 = 2𝜋𝜋 𝑎𝑎
𝜆𝜆0
𝑁𝑁𝑁𝑁, 𝑁𝑁𝑁𝑁 =  �𝑛𝑛12 −  𝑛𝑛22              (2-1) 

 
The LHS and RHS of the characteristic equation (2-2) were plotted to find the values of Xlm where the plots intersect 
and a mode exists [3, 4]. After solving for the values of the X parameter for each of the modes, the expressions (2-3) 
are used to plot the intensity line profile of each mode radially outward. The program uses the angular index of the 
mode to create an angular profile of the mode. The program uses a function [5] to transform the cylindrical coordinates 
into Cartesian so that they can be plotted as a surface.  
 

𝑋𝑋 𝐽𝐽𝑙𝑙±1(𝑋𝑋)
𝐽𝐽𝑙𝑙(𝑋𝑋)

=  ±𝑌𝑌 𝐾𝐾𝑙𝑙±1(𝑌𝑌)
𝐾𝐾𝑙𝑙(𝑌𝑌)

,   𝑌𝑌 =  √𝑉𝑉2 −  𝑋𝑋2           (2-2) 
 

𝐽𝐽𝑙𝑙(𝑋𝑋𝑙𝑙𝑙𝑙
𝑟𝑟
𝑎𝑎)

𝐽𝐽𝑙𝑙(𝑋𝑋𝑙𝑙𝑙𝑙)
,
𝐾𝐾𝑙𝑙(𝑌𝑌𝑙𝑙𝑙𝑙

𝑟𝑟
𝑎𝑎)

𝐾𝐾𝑙𝑙(𝑌𝑌𝑙𝑙𝑙𝑙)
                (2-3) 

 
In order to create a theoretical mode structure for the VCSEL which corresponded to the experimental setup, the modes 
needed to be spaced apart the correct distance. Using the X parameter to calculate the value of βlm with Eq. (2-4), the 
wavelength spacing was found by finding the corresponding λ for each βlm value with Eq. (2-5) [3, 4] and taking the 
difference.  
 

𝛽𝛽𝑙𝑙𝑙𝑙 =  �𝑛𝑛12𝑘𝑘02 −  𝑋𝑋𝑙𝑙𝑙𝑙
2

𝑎𝑎2
         (2-4) 

 
𝛽𝛽 =  𝑘𝑘0𝑛𝑛,   𝑘𝑘0 = 2𝜋𝜋

𝜆𝜆0
                                        (2-5) 

 
In order to find the physical distance between the modes in the final image, the angular spread from the grating was 
used with a right triangle approximation. The correct diffraction order was found using the Littrow configuration of 
the grating equation (2-6). The angular spread was calculated by taking the difference between the β angles of the 
highest and the lowest wavelength (846nm, 845 nm). To calculate the physical height, the boundary rays were 
approximated to form a right triangle after passing through the collimating lens. Using the angular spread and the focal 
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length of the lens, the height of the image was approximated with Eq. (2-7). The ratio between the change in 
wavelength and the image height was used to correctly space the modes in the theoretical image, Figure 6.  
 

sin(𝛼𝛼)  + sin(𝛽𝛽) = 𝑙𝑙𝜆𝜆
𝑑𝑑

,  sin(𝜃𝜃) =  𝑙𝑙𝜆𝜆
2𝑑𝑑

             (2-6) 
 

ℎ = 𝑓𝑓 ∙ tan (∆𝜃𝜃)           (2-7) 

3. RESULTS AND DISCUSSION 
Several different images were constructed by compiling raw image data. Figure 5 illustrates a comparison between 
the theoretical LP modes and the VCSEL modes. To acquire high quality images in Figure 5, several images from 
different currents were combined. The polarizer was adjusted to reduce inference from mode overlap while changing 
the exposure time to adjust to the intensity. Figure 6 is a complete profile of the beam at several different currents. For 
each current, several images were taken and combined to avoid over exposure. The theoretical mode structure is shown 
for comparison; its development is as described in the previous section. The LP01 and LP11 modes appear unstable as 
the current is changed, having high intensity at certain currents while not visible at others. Both polarization states are 
lasing as evidenced by the overlap of the two LP11 orientations.  
 

  
Figure 5. Individual mode comparison to theoretical modes. 

 
Figure 6. Complete VCSEL mode structure with increasing current compared to theoretical mode structure 



 
 

 
 

 
To further investigate the polarization of the modes, images of the beam were taken with the polarizer in different 
orientations. Figure 4(a) and (b) confirm that both orientations of the LP11 are overlapping by isolating each orientation 
using the polarizer. An unexpected effect of polarization was observed with the LP71 mode. The overlapping mode is 
lasing in a different polarization state. Different polarization states between modes were not otherwise observed.  
 

      
 (a) (b) (c) (d) 

Figure 7. (a) LP11e mode. (b) LP11o mode. (c) LP71 mode with overlapping mode in a different polarization state 
(LP42 according to theory). (d) LP71 mode with polarizer blocking the light from the overlapping mode.  

 

The VCSEL near-field was also imaged with a single exposure for each current to show the trend as the higher index 
modes increased in intensity. The instability of the LP01 and LP11 modes is again evident as the relative intensity 
greatly varies between currents. Instability in relative intensity is evident to some degree in all the modes. The LP31 
and the LP12 modes exhibit a general increasing trend in relative intensity. The outer edges of the LP22 mode are 
barely visible at 8.0mA, showing an increase in the brightness of the mode at higher current. 
 
 

 
Figure 8. VCSEL near-field with increasing current. One image is take at each value of current.  

LP22 



 
 

 
 

 
Figure 9. Relative Power of LP modes based on Figure 8 

 

4. CONCLUSION 
The goal of this work was to adapt the spectrometer setup to image the transverse modes of a multi-mode VCSEL. 
The spectrometer was modified by removing the slit while adding a new mount, magnifying lens, and polarizer. With 
the modifications, the VCSEL transverse modes were able to be imaged due to their narrow frequency spread. The 
mode structure for the VCSEL closely corresponded to the expected structure for a circular aperture.  
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