390 research outputs found
Grain boundary segregation in UFG alloys processed by severe plastic deformation
Grain boundary segregations were investigated by Atom Probe Tomography in an
Al-Mg alloy, a carbon steel and Armco\trademark Fe processed by severe plastic
deformation (SPD). In the non-deformed state, the GBs of the aluminium alloy
are Mg depleted, but after SPD some local enrichment up to 20 at.% was
detected. In the Fe-based alloys, large carbon concentrations were also
exhibited along GBs after SPD. These experimental observations are attributed
to the specific structure of GBs often described as "non-equilibrum" in ultra
fine grained materials processed by SPD. The grain boundary segregation
mechanisms are discussed and compared in the case of substitutional (Mg in fcc
Al) and interstitial (C in bcc Fe) solute atoms
Influence of hadronic interaction models and the cosmic ray spectrum on the high energy atmospheric muon and neutrino flux
The recent observations of muon charge ratio up to about 10 TeV and of
atmospheric neutrinos up to energies of about 400 TeV has triggered a renewed
interest into the high-energy interaction models and cosmic ray primary
composition. A reviewed calculation of lepton spectra produced in cosmic-ray
induced extensive air showers is carried out with a primary cosmic-ray spectrum
that fits the latest direct measurements below the knee. In order to achieve
this, we used a full Monte Carlo method to derive the inclusive differential
spectra (yields) of muons, muon neutrinos and electron neutrinos at the surface
for energies between 80 GeV and hundreds of PeV. The air shower simulator {\sc
corsika} 6.990 was used for showering and propagation of the secondary
particles through the atmosphere, employing the established high-energy
hadronic interaction models {\sc sibyll} 2.1, {\sc qgsjet-01} and {\sc
qgsjet-ii 03}. We show that the performance of the interaction models allows
makes it possible to predict the spectra within experimental uncertainties,
while {\sc sibyll} generally yields a higher flux at the surface than the
qgsjet models. The calculation of the flavor and charge ratios has lead to
inconsistent results, mainly influenced by the different representations of the
K/ ratio within the models. Furthermore, we could quantify systematic
uncertainties of atmospheric muon- and neutrino fluxes, associated to the
models of the primary cosmic-ray spectrum and the interaction models. For most
recent parametrizations of the cosmic-ray primary spectrum, atmospheric muons
can be determined with an uncertainty smaller than % of the
average flux. Uncertainties of the muon- and electron neutrino fluxes can be
calculated within an average error of % and %,
respectively.Comment: 16 pages, 10 figures, version 2 includes analytic approximatio
Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux
It is shown, that primary proton spectrum, reconstructed from sea-level and
underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS
3.97 and SIBYLL 2.1 interaction models, demonstrates not only model-dependent
intensity, but also model-dependent form. For correct reproduction of muon
spectrum shape primary proton flux should have non-constant power index for all
considered models, except SIBYLL 2.1, with break at energies around 10-15 TeV
and value of exponent before break close to that obtained in ATIC-2 experiment.
To validate presence of this break understanding of inclusive spectra behavior
in fragmentation region in p-air collisions should be improved, but we show,
that it is impossible to do on the basis of the existing experimental data on
primary nuclei, atmospheric muon and hadron fluxes.Comment: Submitted to Phys. Rev.
Muon-Induced Background Study for Underground Laboratories
We provide a comprehensive study of the cosmic-ray muon flux and induced
activity as a function of overburden along with a convenient parameterization
of the salient fluxes and differential distributions for a suite of underground
laboratories ranging in depth from 1 to 8 km.w.e.. Particular attention
is given to the muon-induced fast neutron activity for the underground sites
and we develop a Depth-Sensitivity-Relation to characterize the effect of such
background in experiments searching for WIMP dark matter and neutrinoless
double beta decay.Comment: 18 pages, 28 figure
Neutron production by cosmic-ray muons at shallow depth
The yield of neutrons produced by cosmic ray muons at a shallow depth of 32
meters of water equivalent has been measured. The Palo Verde neutrino detector,
containing 11.3 tons of Gd loaded liquid scintillator and 3.5 tons of acrylic
served as a target. The rate of one and two neutron captures was determined.
Modeling the neutron capture efficiency allowed us to deduce the total yield of
neutrons neutrons per muon
and g/cm. This yield is consistent with previous measurements at similar
depths.Comment: 12 pages, 3 figure
Predicting Neutron Production from Cosmic-ray Muons
Fast neutrons from cosmic-ray muons are an important background to
underground low energy experiments. The estimate of such background is often
hampered by the difficulty of measuring and calculating neutron production with
sufficient accuracy. Indeed substantial disagreement exists between the
different analytical calculations performed so far, while data reported by
different experiments is not always consistent. We discuss a new unified
approach to estimate the neutron yield, the energy spectrum, the multiplicity
and the angular distribution from cosmic muons using the Monte Carlo simulation
package FLUKA and show that it gives a good description of most of the existing
measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure
Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment
We present the analysis of the muon events with all muon multiplicities
collected during 21804 hours of operation of the first LVD tower. The measured
depth-angular distribution of muon intensities has been used to obtain the
normalization factor, A, the power index, gamma, of the primary all-nucleon
spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the
main parameters which determine the spectrum of cosmic ray muons at the sea
level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95%
C.L.) have been obtained. The upper limit to the prompt muon flux favours the
models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.
Study of single muons with the Large Volume Detector at Gran Sasso Laboratory
The present study is based on the sample of about 3 mln single muons observed
by LVD at underground Gran Sasso Laboratory during 36500 live hours from June
1992 to February 1998. We have measured the muon intensity at slant depths from
3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by
meson decay in the atmosphere. The analysis of these muons has revealed the
power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are
horizontal muons produced by the neutrino interactions in the rock surrounding
LVD. The value of this flux is obtained. The results are compared with Monte
Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic
Nuclei
On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements
For the first time a complete set of the most recent direct data on primary
cosmic ray spectra is used as input into calculations of muon flux at sea level
in wide energy range GeV. Computations have been performed
with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained
muon intensity with the data of muon experiments shows, that measurements of
primary nuclei spectra conform to sea level muon data only up to several tens
of GeV and result in essential deficit of muons at higher energies. As it
follows from our examination, uncertainties in muon flux measurements and in
the description of nuclear cascades development are not suitable to explain
this contradiction, and the only remaining factor, leading to this situation,
is underestimation of primary light nuclei fluxes. We have considered
systematic effects, that may distort the results of the primary cosmic ray
measurements with the application of the emulsion chambers. We suggest, that
re-examination of these measurements is required with the employment of
different hadronic interaction models. Also, in our point of view, it is
necessary to perform estimates of possible influence of the fact, that sizable
fraction of events, identified as protons, actually are antiprotons. Study of
these cosmic ray component begins to attract much attention, but today nothing
definite is known for the energies GeV. In any case, to realize whether
the mentioned, or some other reasons are the sources of disagreement of the
data on primaries with the data on muons, the indicated effects should be
thoroughly analyzed
First events from the CNGS neutrino beam detected in the OPERA experiment
The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS)
was designed to perform the first detection of neutrino oscillations in
appearance mode, through the study of nu_mu to nu_tau oscillations. The
apparatus consists of a lead/emulsion-film target complemented by electronic
detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam
(CNGS) 730 km away from the neutrino source. In August 2006 a first run with
CNGS neutrinos was successfully conducted. A first sample of neutrino events
was collected, statistically consistent with the integrated beam intensity.
After a brief description of the beam and of the various sub-detectors, we
report on the achievement of this milestone, presenting the first data and some
analysis results.Comment: Submitted to the New Journal of Physic
- …
