635 research outputs found

    Discovery of a second SALMFamide gene in the sea urchin Strongylocentrotus purpuratus reveals that L-type and F-type SALMFamide neuropeptides coexist in an echinoderm species

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in MARINE GENOMICS. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in MARINE GENOMICS, [VOL 3, ISSUE 2, (2010)] DOI: 10.1016/j.margen.2010.08.00

    Bioactivity and structural properties of chimeric analogs of the starfish SALMFamide neuropeptides S1 and S2

    Get PDF
    The starfish SALMFamide neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide) are the prototypical members of a family of neuropeptides that act as muscle relaxants in echinoderms. Comparison of the bioactivity of S1 and S2 as muscle relaxants has revealed that S2 is ten times more potent than S1. Here we investigated a structural basis for this difference in potency by comparing the bioactivity and solution conformations (using NMR and CD spectroscopy) of S1 and S2 with three chimeric analogs of these peptides. A peptide comprising S1 with the addition of S2's N-terminal tetrapeptide (Long S1 or LS1; SGPYGFNSALMFamide) was not significantly different to S1 in its bioactivity and did not exhibit concentration-dependent structuring seen with S2. An analog of S1with its penultimate residue substituted from S2 (S1(T); GFNSALTFamide) exhibited S1-like bioactivity and structure. However, an analog of S2 with its penultimate residue substituted from S1 (S2(M); SGPYSFNSGLMFamide) exhibited loss of S2-type bioactivity and structural properties. Collectively, our data indicate that the C-terminal regions of S1 and S2 are the key determinants of their differing bioactivity. However, the N-terminal region of S2 may influence its bioactivity by conferring structural stability in solution. Thus, analysis of chimeric SALMFamides has revealed how neuropeptide bioactivity is determined by a complex interplay of sequence and conformation

    The Protein Precursors of Peptides That Affect the Mechanics of Connective Tissue and/or Muscle in the Echinoderm Apostichopus japonicus

    Get PDF
    PMCID: PMC3432112This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association

    Get PDF
    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo

    The evolution and comparative neurobiology of endocannabinoid signalling

    Get PDF
    CB(1)- and CB(2)-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB(1)-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB(1)/CB(2)-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB(1)/CB(2)-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB(1)/CB(2)-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB(1)/CB(2)-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids

    Tracking human face features in thermal images for respiration monitoring

    Get PDF
    A method has been developed to track a region related to respiration process in thermal images. The respiration region of interest (ROI) consisted of the skin area around the tip of the nose. The method was then used as part of a non-contact respiration rate monitoring that determined the skin temperature changes caused by respiration. The ROI was located by the first determining the relevant salient features of the human face physiology. These features were the warmest and coldest facial points. The tracking method was tested on thermal video images containing no head movements, small random and regular head movements. The method proved valuable for tracking the ROI in all these head movement types. It was also possible to use this tracking method to monitor respiration rate involving a number of head movement types. Currently, more investigations are underway to improve the tracking method so that it can track the ROI in cases larger head movements

    NG peptides: A novel family of neurophysin-associated neuropeptides

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in GENE. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in GENE, [VOL 458, ISSUE 1-2, (2010)] DOI: 10.1016/j.gene.2010.03.00

    Narcolepsy and Cataplexy – a practical approach to diagnosis and managing the impact of this chronic condition on children and their families

    Get PDF
    Narcolepsy is a relatively common neurological condition affecting the regulation of normal sleep/wake cycles leading to excessive daytime sleepiness (EDS). It is almost certainly under-recognised as it has a prevalence of 20–50 per 100,000 population and most cases have an onset in adolescence. Cataplexy (attacks of muscle weakness often precipitated by strong emotions) is a hallmark of this condition and represents the intrusion of REM sleep into wakefulness. Narcolepsy is caused by destruction of hypocretin producing cells due to an autoimmune process often by an infective trigger. Hypocretin is found in the hypothalamus and plays a role in stabilisation of the transition between wake and sleep states. In establishing a diagnosis a comprehensive history to exclude other causes of EDS, including poor sleep habits, is essential. Primary sleep related conditions such as sleep apnoea should be excluded. Investigations for confirmation of the diagnosis include Actigraphy, Polysomnography (PSG), Multiple Sleep Latency Testing (MSLT) and CSF analysis. The symptoms of this debilitating condition can have a huge impact on a child's life and are often vastly underestimated. The impact of EDS on cognitive function is an important factor in difficulties at school, mood, quality of life and future career opportunities. Advances in understanding the pathophysiology have led to trials of novel treatment approaches. The aim of this article is to briefly summarise the recent advances in understanding and give an overview of this important condition for those who are involved in the care of a child with this disease
    • …
    corecore