5,485 research outputs found

    A cellular automaton for the factor of safety field in landslides modeling

    Full text link
    Landslide inventories show that the statistical distribution of the area of recorded events is well described by a power law over a range of decades. To understand these distributions, we consider a cellular automaton to model a time and position dependent factor of safety. The model is able to reproduce the complex structure of landslide distribution, as experimentally reported. In particular, we investigate the role of the rate of change of the system dynamical variables, induced by an external drive, on landslide modeling and its implications on hazard assessment. As the rate is increased, the model has a crossover from a critical regime with power-laws to non power-law behaviors. We suggest that the detection of patterns of correlated domains in monitored regions can be crucial to identify the response of the system to perturbations, i.e., for hazard assessment.Comment: 4 pages, 3 figure

    Estimating soil suction from electrical resistivity

    Get PDF
    Abstract. Soil suction and resistivity strongly depend on the degree of soil saturation and, therefore, both are used for estimating water content variations. The main difference between them is that soil suction is measured using tensiometers, which give point information, while resistivity is obtained by tomography surveys, which provide distributions of resistivity values in large volumes, although with less accuracy. In this paper, we have related soil suction to electrical resistivity with the aim of obtaining information about soil suction changes in large volumes, and not only for small areas around soil suction probes. We derived analytical relationships between soil matric suction and electrical resistivity by combining the empirical laws of van Genuchten and Archie. The obtained relationships were used to evaluate maps of soil suction values in different ashy layers originating in the explosive activity of the Mt Somma-Vesuvius volcano (southern Italy). Our findings provided a further example of the high potential of geophysical methods in contributing to more effective monitoring of soil stress conditions; this is of primary importance in areas where rainfall-induced landslides occur periodically

    Parametric thermal analysis for the optimization of Double Walled Tubes layout in the Water Cooled Lithium Lead inboard blanket of DEMO fusion reactor

    Get PDF
    Within the roadmap that will lead to the nuclear fusion exploitation for electric energy generation, the construction of a DEMOnstration (DEMO) reactor is, probably, the most important milestone to be reached since it will demonstrate the technological feasibility and economic competitiveness of an industrial-scale nuclear fusion reactor. In order to reach this goal, several European universities and research centres have joined their efforts in the EUROfusion action, funded by HORIZON 2020 UE programme. Within the framework of EUROfusion research activities, ENEA and University of Palermo are involved in the design of the Water-Cooled Lithium Lead Breeding Blanket (WCLL BB), that is one of the two BB concepts under consideration to be adopted in the DEMO reactor. It is mainly characterized by a liquid lithium-lead eutectic alloy acting as breeder (lithium) and neutron multiplier (lead), as well as by subcooled pressurized water as coolant. Two separate circuits, both characterized by a pressure of 15.5 MPa and inlet/outlet temperatures of 295 °C/328 °C, are deputed to cool down the First Wall (FW) and the Breeder Zone (BZ). The former consists in a system of radial-toroidal-radial C-shaped squared channels where countercurrent water flow occurs while the latter relies in the use of bundles of poloidal-radial Double Walled Tubes (DWTs) housed within the breeder. A parametric thermal study has been carried out in order to assess the best DWTs' layout assuring that the structural material maximum temperature does not overcome the allowable limit of 550 °C and that the overall coolant thermal rise fulfils the design target value of 33 °C. The study has been performed following a theoretical-numerical approach based on the Finite Element Method (FEM) and adopting the quoted Abaqus FEM code. Main assumptions and models together with results obtained are herewith reported and critically discussed

    Multiphysics Optimization for First Wall Design Enhancement in Water-Cooled Breeding Blankets

    Get PDF
    The commercial feasibility of the first fusion power plant generation adopting D-T plasma is strongly dependent upon the self-sustainability in terms of tritium fuelling. Within such a kind of reactor, the component selected to house the tritium breeding reactions is the breeding blanket, which is further assigned to heat power removal and radiation shielding functions. As a consequence of both its role and position, the breeding blanket is heavily exposed to both surface and volumetric heat loads and, hence, its design requires a typical multiphysics approach, from the neutronics to the thermo-mechanics. During last years, a great deal of effort has been put in the optimization of the breeding blanket design, with the aim of maximizing the tritium breeding and heat removal performances without undermining its structural integrity. In this paper, a derivative-free optimization method named “Complex method” is applied for the design optimization of the European DEMO Water-Cooled Lithium Lead breeding blanket concept. To this purpose, a potential performances-based objective function, focusing on the maximization of the tritium breeding, is defined and a multiphysics numerical model of the blanket is developed in order to solve the coupled thermo-mechanical problem, while the optimization algorithm leads the design towards a minimum optimum point compliant with the prescribed requirements. Once the optimized design is obtained, its nuclear and thermo-structural performances are assessed by means of specific neutron transport and multiphysics simulations, respectively. Finally, the structural integrity is verified by means of the application of the RCC-MRx design criteria

    Validation of multi-physics integrated procedure for the HCPB breeding blanket

    Get PDF
    The wide range of requirements and constraints involved in the design of nuclear components for fusion reactors makes the development of multi-physics analysis procedures of utmost importance. In the framework of the European DEMO project, the Karlsruhe Institute of Technology (KIT) is dedicating several efforts to the development of a multi-physics analysis tool allowing the characterization of breeding blanket design points which are consistent from the neutronic, thermal-hydraulic and thermal-mechanical points of view. In particular, a procedure developed at KIT is characterized by the implementation of analysis software only. A preliminary step for the validation of such a procedure has been accomplished using a dedicated model of the DEMO Helium Cooled Pebble Bed Blanket 4th outboard module. A global model representative of nuclear irradiation in DEMO and two local models have been set up. Nuclear power deposition and the spatial distribution of its volumetric density have been calculated using Monte Carlo N-Particle transport code for the aforementioned models and compared in order to validate the procedure set up. The outcomes of this comparative study are herein presented and critically discussed

    Nonlinear modal testing performed by pulsed-air jet excitation system

    Get PDF
    This paper presents a novel approach for testing structural component to nonlinear vibrations. Nowadays, nonlinear testing is mainly carried out by using electromagnetic shakers. These are efficient and powerful excitation systems which transmit the force by a rigid stinger and can be driven by different excitation signals. The rigid connection contributes to create mechanical impedance mismatch between the shaker and the test structure thus reducing the efficiency of the driving force. An alternative solution to shakers is represented by use of a pulsed air jet excitation method, which drives the force by a pulsed air-jets and therefore contactless. This condition eliminates the mechanical impedance mismatch with the test structure and the excitation can be more efficient than the one created by shakers. The pulsed air-jet excitation system is used to study nonlinear vibrations of composites components. These were designed to be mock-ups of fan blades the layup of which was varied for the three types of components used in this work. Tests were carried out by performing forced response and free decay measurements. The free decay type of test revealed interesting results and the novelty of using such an exciter for nonlinear testing. The major novelty consists of interrupting the air flow from a steady state condition and let happen the free decay, all these without experiencing undesired dynamics as experienced by contact excitatio

    Conceptual design of the enhanced coolant purification systems for the European HCLL and HCPB test blanket modules

    Get PDF
    The Coolant Purification Systems (CPSs) is one of the most relevant ancillary systems of European Helium Cooled Lead Lithium (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Modules (TBMs) which are currently in the preliminary design phase in view of their installation and operation in ITER. The CPS implements mainly two functions: the extraction and concentration of the tritium permeated from the TBM modules into the primary cooling circuit and the chemistry control of helium primary coolant. During the HCLL and HCPB-TBSs (Test Blanket Systems) Conceptual Design Review (CDR) in 2015 it was recognized the need of reducing the tritium permeation into the Port Cell #16 of ITER. To achieve this and, then, to lower the tritium partial pressure in the Helium Cooling Systems in normal operation, the helium flow-rate treated by each CPS has been increased of almost one order of magnitude. In 2017, to satisfy the CDR outcomes and the new design requirements requested by Fusion for Energy (F4E, the European Domestic Agency for ITER), ENEA performed a preliminary design of the “enhanced” CPSs. This paper presents the current design of the “enhanced” CPSs, focusing on design requirements, assumptions, selection of technologies and preliminary components sizing
    • …
    corecore