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The primary purpose of this topic is to collect scientific contri-
butions providing novel insights in the cellular and molecular
mechanisms of epileptogenesis as potential targets for innovative
therapeutic approaches aimed at preventing the chronic epileptic
disorder.

Prevention of chronic epileptic disorder with an appropri-
ate intervention might represent the most ambitious goal in the
clinical treatment of this epileptic disorder, but has been largely
unsuccessful to this point. Clinical trials aimed at prevention
of chronic epilepsy have often produced negative, disappointing
results. However, in most cases, these studies ultimately evaluated
the downstream clinical manifestations, failing to monitor early,
specific molecular epileptogenic events. Therefore, elucidation of
the underlying mechanisms of epileptogenesis, are essential.

Several types of brain injuries are causes of acquired epilepsy,
including brain trauma, one of the most common causes of
idiopathic epilepsy (Hunt et al., 2013; Timofeev et al., 2013).
Genetic mutations enhancing structural and functional alter-
ations of key proteins including pre-synaptic complexes (Toader
et al., 2013) and potassium channels (D’Adamo et al., 2013) are
also related to the occurrence of epileptic disorders. Consistently
with these findings obtained in genetic animal models of
epilepsy, studies conducted in animal models of acquired epilepsy
addressed the critical role of vesicular neurotransmitters trans-
porters (VNTs) (Van Liefferinge et al., 2013) and non-neuronal
potassium channel (Kir4.1) (Nagao et al., 2013) expression during
epileptogenesis.

Temporal Lobe Epilepsy (TLE) is the most common form of
refractory epileptic disorder often related to childhood seizures.
The symptomatic manifestations of TLE appear only after a
widespread irreversible damage of entorhinal cortex (Bartolomei
et al., 2005), hippocampus (Mathern et al., 2002) and perirhi-
nal cortex, which has a major role in the spread of limbic
seizures (Biagini et al., 2013), These pathological features of TLE
reduce the possibility of successful therapeutic approaches, often
rendering the disease refractory. The difficult clinical manage-
ment of chronic TLE and the limited success rate of surgical
approaches, increase the incapacitating nature of this specific
epileptic disorder.

Despite its complex etiology, a common feature of the epileptic
disorders is a paroxysmal excitatory activity, which is able to pro-
duce the same pathological features that are ultimately recognized
clinically as epileptic disease.

Only recently the role of oxidative stress in epilepsies has begun
to be recognized. Neuronal hyper-excitability is associated with
a calcium-dependent activation of intracellular oxidant systems,

including NOX2, which is the major NMDAR-regulated source
of superoxide (Di Maio et al., 2011). This early phenomenon
occurring during the epileptic onset might be responsible for the
long-term neuronal dysfunction leading to the chronic epileptic
disorder (Di Maio et al., 2012).

Excitatory/inhibitory unbalance and oxidative-related events
might be determinant in the epileptic pathogenesis of neu-
ronal networks mediating a complex disruption of self-regulatory
homeostatic mechanisms such as the bioenergetics systems
(Boison et al., 2013).

Epileptic neurons may develop short and long-term adap-
tive changes in sensitivity to GABA-ergic neurotransmission
by means of GABAA receptor (Cifelli et al., 2013), worsening
the excitatory/inhibitory unbalance and reducing the possibil-
ity of successful therapeutic approaches with the conventional
Antiepileptic Drugs. Interesting insights have been recently pro-
vided on this regard. Epileptogenic changes of GABAA recep-
tor may be caused by altered expression of scaffolding proteins
involved in the trafficking and anchoring of GABAA recep-
tors. This phenomenon could directly impact the stability of
GABA-ergic synapses and promote impairment of the neuronal
response to the inhibitory GABA-ergic input. These findings offer
novel potential therapeutic targets to prevent the development of
epilepsy.

Dopaminergic projections to limbic system play also a crit-
ical role in the control of seizures. Dopaminergic activity in
limbic structure exerts a complex neuromodulation of neu-
ronal excitability mainly through D1 and D2 receptors subtypes.
Impairment of the fine tuning mediated by dopamine (DA)
receptors activity can contribute to spread of seizures in the lim-
bic system. Recent evidences on the identification of intracellular
signaling pathways activated by DA receptors activity are leading
to promising studies aimed at the identification of novel targets
for the treatment of epilepsy (Bozzi and Borrelli, 2013).

An increasing number of experimental evidences suggest a
major involvement of inflammation in epileptogenesis. Seizure
activity elicits release of pro-inflammatory cytokines and acti-
vates immune responses. These phenomena have been widely
related to an increased brain susceptibility to seizure, synaptic
reorganization and neuronal death (Xu et al., 2013).

Inflammatory processes in brain can affect the extracellular
neuronal matrix (ECM) integrity. ECM plays a critical role in
the modulation of AMPA receptor mobility, paired-pulse depres-
sion, L-type voltage-dependent Ca2+ channel activity and LTP
processes. Noteworthy, an original study published in this topic,
suggests that changes in the expression of Hyaluronic acid, the
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major component of neuronal ECM, can lead to neuronal hyper-
excitability and calcium dysregulation (Vedunova et al., 2013).

Neuronal cell death has been implicated as a causal factor
leading to the development of the epileptic disorder. The find-
ings reported in this topic support the idea that repeated seizures
mediate neuronal necrosis and apoptosis prevalently associated to
the activation of certain distinct anti/pro-apoptotic Bcl-2 family
factors. Thus, epileptogenesis elicits apoptotic events by means of
a specific pattern of Bcl-2 family proteins, which might represent
a possible target of intervention to protect against the epileptic
damage (Henshall and Engel, 2013).

Hormones play an important role in the epileptic disorders.
Corticosteroids, progesterone, estrogens, and neurosteroids have
been shown to affect seizure activity in animal models and in
human. However, the impact of hormones on epileptogenesis is
still underexplored and controversial. Further studies are required
in the field to generate evidences on the therapeutic potential of
hormonal agents in epileptogenesis (Reddy, 2013).

The circadian pattern of seizures is one of the first phenomena
described in the epileptic disorders. However, due to the lack of
promising hypotheses, has not attracted enough scientific atten-
tion. Recent findings provide novel insights in the implication of
circadian rhythm in modulating transcription factors governing
clock genes expression, and the mTOR signaling pathway, one of
the most relevant signaling pathway in epilepsy (Cho, 2012).
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