662 research outputs found

    A Review of Artificial Intelligence and Robotics in Transformed Health Ecosystems

    Get PDF
    Health care is shifting toward become proactive according to the concept of P5 medicine – a predictive, personalized, preventive, participatory and precision discipline. This patient-centered care heavily leverages the latest technologies of artificial intelligence (AI) and robotics that support diagnosis, decision making and treatment. In this paper, we present the role of AI and robotic systems in this evolution, including example use cases. We categorize systems along multiple dimensions such as the type of system, the degree of autonomy, the care setting where the systems are applied, and the application area. These technologies have already achieved notable results in the prediction of sepsis or cardiovascular risk, the monitoring of vital parameters in intensive care units, or in the form of home care robots. Still, while much research is conducted around AI and robotics in health care, adoption in real world care settings is still limited. To remove adoption barriers, we need to address issues such as safety, security, privacy and ethical principles; detect and eliminate bias that could result in harmful or unfair clinical decisions; and build trust in and societal acceptance of AI

    Crowdsourcing for Creating a Dataset for Training a Medication Chatbot

    Get PDF
    To facilitate interaction with mobile health applications, chatbots are increasingly used. They realize the interaction as a dialog where users can ask questions and get answers from the chatbot. A big challenge is to create a comprehensive knowledge base comprising patterns and rules for representing possible user queries the chatbot has to understand and interpret. In this work, we assess how crowdsourcing can be used for generating examples of possible user queries for a medication chatbot. Within one week, the crowdworker generated 2'738 user questions. The examples provide a large variety of possible formulations and information needs. As a next step, these examples for user queries will be used to train our medication chatbot

    5d-5f Electric-multipole Transitions in Uranium Dioxide Probed by Non-resonant Inelastic X-ray Scattering

    Full text link
    Non-resonant inelastic x ray scattering (NIXS) experiments have been performed to probe the 5d-5f electronic transitions at the uranium O(4,5) absorption edges in uranium dioxide. For small values of the scattering vector q, the spectra are dominated by dipole-allowed transitions encapsulated within the giant resonance, whereas for higher values of q the multipolar transitions of rank 3 and 5 give rise to strong and well-defined multiplet structure in the pre-edge region. The origin of the observed non-dipole multiplet structures is explained on the basis of many-electron atomic spectral calculations. The results obtained demonstrate the high potential of NIXS as a bulk-sensitive technique for the characterization of the electronic properties of actinide materials.Comment: Submitted to Physical Review Letters on 31 December 200

    Dynamic Pocket Card for Implementing ISBAR in Shift Handover Communication.

    Get PDF
    A risk factor for patient safety are communication failures among health professionals. Communication standards such as SBAR or ISBAR (situation, background, assessment, recommendation) aim at improving the exchange of information between health professionals by specifying a certain structure and content of information. However, those tools are not well established in daily clinical practice and IT support is missing which results in unstructured, inefficient and error prone information exchange. In this paper, we address this issue by presenting a mobile application that implements the ISBAR communication standard for the intensive care unit (ICU). The system can serve as digital pocket card supporting nurses in preparation for reporting and in a structured information provision during shift handover and in daily reporting. We collected requirements in collaboration with a hospital and developed a prototype. Within the application, nurses can take notes on the five information categories of ISBAR, which allows to reproduce the information in reporting situations in a structured manner. In future, it will be assessed in a pilot phase whether the digital pocket card is suitable for everyday clinical use

    Crystal-field splitting in coadsorbate systems: c (2x2) CO/K/Ni (100)

    Get PDF
    It is demonstrated how the crystal field splitting (CFS) fine structure can be used to characterize a coadsor-bate system. We have applied K 2p x-ray absorption spectroscopy (XAS) to the c(2x2) CO/K/Ni(100) system. The CFS fine structure is shown to be sensitive to the the local atomic environment, the level of interaction, and the chemical state of the alkali atoms. From angle dependent XAS measurements, combined with x-ray photoelectron spectroscopy, a significant K-CO electrostatic adsorbate-adsorbate interaction is found, whereas the K-Ni interaction is substantially weaker. The present results provide evidence for a coad-sorbed overlayer best described in terms of the properties associated with an ionic (two-dimensional) crystal

    Characterization of clones of boolean operations by identities

    No full text
    In [4] the authors characterized all clones of Boolean operations (Boolean clones) by functional terms. In this paper we consider a Galois connection between operations and equations and characterize all Boolean clones by using of identities. For each Boolean clone we obtain a set of equations with the property that an operation f belongs to this clone if and only if it satisfies these equations

    Electronic structure investigation of the cubic inverse perovskite Sc3AlN

    Full text link
    The electronic structure and chemical bonding of the recently discovered inverse perovskite Sc3AlN, in comparison to ScN and Sc metal have been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Sc L, N K, Al L1, and Al L2,3 emission spectra are compared with calculated spectra using first principle density-functional theory including dipole transition matrix elements. The main Sc 3d - N 2p and Sc 3d - Al 3p chemical bond regions are identified at -4 eV and -1.4 eV below the Fermi level, respectively. A strongly modified spectral shape of 3s states in the Al L2,3 emission from Sc3AlN in comparison to pure Al metal is found, which reflects the Sc 3d - Al 3p hybridization observed in the Al L1 emission. The differences between the electronic structure of Sc3AlN, ScN, and Sc metal are discussed in relation to the change of the conductivity and elastic properties.Comment: 11 pages, 5 picture

    Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy

    Full text link
    The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab initio density-functional theory including dipole matrix elements. The detailed investigation of the electronic structure and chemical bonding provides increased understanding of the physical properties of this type of nanolaminates. Three different types of bond regions are identified; the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper in energy are observed around 2.5 eV and 10 eV below the Fermi level, respectively. A strongly modified spectral shape of the 3s final states in comparison to pure Al is detected for the buried Al monolayers indirectly reflecting the Ti 3d - Al 3p hybridization. The differences between the electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in relation to the number of Al layers per Ti layer in the two former systems and the corresponding change of the unusual materials properties.Comment: 14 pages, 7 figures; PACS:78.70.En, 71.15.Mb, 71.20.-

    Electronic structure and chemical bonding in Ti4SiC3 investigated by soft x-ray emission spectroscopy and first principle theory

    Full text link
    The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x-ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.Comment: 12 pages, 7 figures, 1 tabl

    Thermal neutron induced (n,p) and (n,alpha) reactions on 37Ar

    Full text link
    The 37Ar(n_th,alpha)34S and 37Ar(n_th,p)37Cl reactions were studied at the high flux reactor of the ILL in Grenoble. For the 37Ar(n_th,alpha_0) and 37Ar(n_th,p) reaction cross sections, values of (1070+/-80)b and (37+/-4)b, respectively, were obtained. Both values are about a factor 2 smaller than results of older measurements. The observed suppression of the 37(n_th,alpha_1) transition could be verified from theoretical considerations. Finally, evidence was found for the two-step 37Ar(n_th,gamma-alpha) process.Comment: 11 pages, 5 figures, accepted for publication in Nuclear Physics
    corecore