140 research outputs found

    Creative project assessment paper| A personal performance

    Get PDF

    Investigations of air-sea gas exchange in the CoOP Coastal Air-Sea Chemical Exchange project

    Get PDF
    Author Posting. © Oceanography Society, 2008. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 21, 4 (2008): 34-45.The exchange of CO2 and other gases across the ocean-air interface is an extremely important component in global climate dynamics, photosynthesis and respiration, and the absorption of anthropogenically produced CO2. The many different mechanisms and properties that control the air-sea flux of CO2 can have large spatial and temporal variability, particularly in the coastal environment. The need for making short-time-scale and small-spatial-scale estimates of gas transfer velocity, along with the physical and chemical parameters that affect it, provided a framework for the field experiments of the Coastal Ocean Processes Program (CoOP) Coastal Air-Sea Chemical Exchange (CASCEX) program. As such, the CASCEX project provided an opportunity to develop some of the first in situ techniques to estimate gas fluxes using micrometeorological and thermal imagery techniques. The results reported from the CASCEX experiments represent the first step toward reconciling the indirect but widely accepted estimates of gas exchange with these more direct, higher-resolution estimates over the coastal ocean. These results and the advances in sensor technology initiated during the CASCEX project have opened up even larger regions of the global ocean to investigation of gas exchange and its role in climate change.Funding for this work was provided by the National Science Foundation (NSF) CoOP program under grants OCE-9410534 and OCE-9711285

    A global numerical study of radon-222 and lead-210 in the atmosphere using the AES and York University CDT General Circulation Model (AYCG)

    Get PDF
    The Canadian Climate Center (CCC) GCM has been modified to allow its use for studies in atmospheric chemistry. The initial experiments reported here have been run to test and allow sensitivity studies of the new transport module. The impact of different types of parameterization for the convective mixing have been studied based on the large scale evolution of Rn-222 and Pb-210. Preliminary results have shown that the use of a scheme, which mixes unstable columns over a very short time scale, produces a global distribution of lead that agrees in some aspects with observations. The local impact of different mixing schemes on a short lived tracer like the radon is very important

    Sensors and Systems for in situ Observations of Marine Carbon Dioxide System Variables

    Get PDF
    Autonomous chemical sensors are required to document the marine carbon dioxide system's evolving response to anthropogenic CO2 inputs, as well as impacts on short- and long-term carbon cycling. Observations will be required over a wide range of spatial and temporal scales, and measurements will likely need to be maintained for decades. Measurable CO2 system variables currently include total dissolved inorganic carbon (DIC), total alkalinity (AT), CO2 fugacity (fCO2), and pH, with comprehensive characterization requiring measurement of at least two variables. These four parameters are amenable to in situ analysis, but sustained deployment remains a challenge. Available methods encompass a broad range of analytical techniques, including potentiometry, spectrophotometry, conductimetry, and mass spectrometry. Instrument capabilities (precision, accuracy, endurance, reliability, etc.) are diverse and will evolve substantially over the time that the marine CO2 system undergoes dramatic changes. Different suites of measurements/parameters will be appropriate for different sampling platforms and measurement objectives

    Sea surface pCO2 and O2 in the Southern Ocean during the austral fall, 2008

    Get PDF
    The physical and biological processes controlling surface mixed layer pCO2 and O2 were evaluated using in situ sensors mounted on a Lagrangian drifter deployed in the Atlantic sector of the Southern Ocean (∌50°S, ∌37°W) during the austral fall of 2008. The drifter was deployed three times during different phases of the study. The surface ocean pCO2 was always less than atmospheric pCO2 (−50.4 to −76.1 ÎŒatm), and the ocean was a net sink for CO2 with fluxes averaging between 16.2 and 17.8 mmol C m−2 d−1. Vertical entrainment was the dominant process controlling mixed layer CO2, with fluxes that were 1.8 to 2.2 times greater than the gas exchange fluxes during the first two drifter deployments, and was 1.7 times greater during the third deployment. In contrast, during the first two deployments the surface mixed layer was always a source of O2 to the atmosphere, and air-sea gas exchange was the dominant process occurring, with fluxes that were 2.0 to 4.1 times greater than the vertical entrainment flux. During the third deployment O2 was near saturation the entire deployment and was a small source of O2 to the atmosphere. Net community production (NCP) was low during this study, with mean fluxes of 3.2 to 6.4 mmol C m−2 d−1 during the first deployment and nondetectable (within uncertainty) in the third. During the second deployment the NCP was not separable from lateral advection. Overall, this study indicates that in the early fall the area is a significant sink for atmospheric CO2

    Sea surface pCO2 and O2 dynamics in the partially ice-covered Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1425–1438, doi:10.1002/2016JC012162.Understanding the physical and biogeochemical processes that control CO2 and dissolved oxygen (DO) dynamics in the Arctic Ocean (AO) is crucial for predicting future air-sea CO2 fluxes and ocean acidification. Past studies have primarily been conducted on the AO continental shelves during low-ice periods and we lack information on gas dynamics in the deep AO basins where ice typically inhibits contact with the atmosphere. To study these gas dynamics, in situ time-series data have been collected in the Canada Basin during late summer to autumn of 2012. Partial pressure of CO2 (pCO2), DO concentration, temperature, salinity, and chlorophyll-a fluorescence (Chl-a) were measured in the upper ocean in a range of sea ice states by two drifting instrument systems. Although the two systems were on average only 222 km apart, they experienced considerably different ice cover and external forcings during the 40–50 day periods when data were collected. The pCO2 levels at both locations were well below atmospheric saturation whereas DO was almost always slightly supersaturated. Modeling results suggest that air-sea gas exchange, net community production (NCP), and horizontal gradients were the main sources of pCO2 and DO variability in the sparsely ice-covered AO. In areas more densely covered by sea ice, horizontal gradients were the dominant source of variability, with no significant NCP in the surface mixed layer. If the AO reaches equilibrium with atmospheric CO2 as ice cover continues to decrease, aragonite saturation will drop from a present mean of 1.00 ± 0.02 to 0.86 ± 0.01.U.S. National Science Foundation Arctic Observing Network Grant Number: ARC-1107346 and ARC-08564792017-08-2

    Uptake and sequestration of atmospheric CO2 in the Labrador Sea deep convection region

    Get PDF
    The Labrador Sea is an important area of deep water formation and is hypothesized to be a significant sink for atmospheric CO2 to the deep ocean. Here we examine the dynamics of the CO2 system in the Labrador Sea using time-series data obtained from instrumentation deployed on a mooring near the former Ocean Weather Station Bravo. A 1-D model is used to determine the air-sea CO2 uptake and penetration of the CO2 into intermediate waters. The results support that mixed-layer pCO2 remained undersaturated throughout most of the year, ranging from 220 ÎŒatm in mid-summer to 375 ÎŒatm in the late spring. Net community production in the summer offset the increase in pCO2 expected from heating and air-sea uptake. In the fall and winter, cooling counterbalanced a predicted increase in pCO2 from vertical convection and air-sea uptake. The predicted annual mean air to sea flux was 4.6 mol m−2 yr−1 resulting in an annual uptake of 0.011 ± 0.005 Pg C from the atmosphere within the convection region. In 2001, approximately half of the atmospheric CO2 penetrated below 500 m due to deep convection

    New technologies for 3D realization in Art and Design practice

    Get PDF
    As digital design technologies become ever more widespread, CAD-CAM, virtual and rapid prototyping techniques are increasingly being exploited by creative practitioners working in areas outside the industrial design and engineering contexts in which these technologies are currently predominantly employed. This review paper aims to critically examine work by artists, craft practitioners, and designer-makers who creatively engage with these new and rapidly emerging technologies and, by doing so, extend their own practice and push at the boundaries of art and design disciplines. Historic precedents for new 3D technologies in the fine and applied arts are identified, and writing by Heidegger, Baudrillard, and Virilio informs the critical review of work by art and design practitioners in sculpture, metalwork, jewellery, and ceramics. The discussion reflects on relationships between art and technology and physical and virtual making, and concludes by pointing to the possibility of new “hybrid” forms of practice which bridge the gap between physical and virtual design worlds. The paper closes by suggesting that the notion of “truth to materials” in the arts and crafts might now be extended to one of “truth to virtual materials”, as practitioners creatively negotiate relationships between digital cause and physical effect

    Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C08S08, doi:10.1029/2003JC001800.The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of −4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model.This material is based upon work supported by the NSF under grant OCE-9986724, and by NOAA/OGP grant GC00-226

    Use of SF6 to estimate anthropogenic CO2 in the upper ocean

    Get PDF
    The highest concentrations of anthropogenic carbon (C_ant) are found in the upper layers of the world ocean. However, this is where seasonal variability of inorganic carbon and related parameters due to thermal and biological effects complicates use of back-calculation approaches for C ant . Tracer based approaches to C_ant estimation are unaffected by biological variability and have found wide application. However, slow-down, even reversal, of the atmospheric growth of chlorofluorocarbons (CFCs) restricts use of these tracers for C ant estimation for waters ventilated since the mid 1990s. Here we apply SF6, a tracer that continues to increase in the atmosphere, as a basis for the C_ant estimation, using samples collected in the midlatitude North Atlantic in 2004. C ant estimates derived from water mass transit time distributions (TTDs) calculated with SF6 are compared to those based on CFC-12. For recently ventilated waters (pCFC-12 > ∌450 ppt), the uncertainty of SF6 based estimates of C_ant is ∌6 ÎŒmol kg−1 less than that of CFC-12 based estimates. CFC-12 based estimates remain more reliable for older (deeper) water masses, as a result of the longer input history and more readily detectable concentrations of CFC-12. Historical data suggest that the near-surface saturation of CFC-12 has increased over time, in inverse proportion to its atmospheric growth rate. Use of a time-dependent saturation of CFC-12 in TTD calculations appears to provide more reliable estimation of C_ant
    • 

    corecore