144 research outputs found

    Understanding the saturation power of Josephson Parametric Amplifiers made from SQUIDs arrays

    Full text link
    We report on the implementation and detailed modelling of a Josephson Parametric Amplifier (JPA) made from an array of eighty Superconducting QUantum Interference Devices (SQUIDs), forming a non-linear quarter-wave resonator. This device was fabricated using a very simple single step fabrication process. It shows a large bandwidth (45 MHz), an operating frequency tunable between 5.9 GHz and 6.8 GHz and a large input saturation power (-117 dBm) when biased to obtain 20 dB of gain. Despite the length of the SQUID array being comparable to the wavelength, we present a model based on an effective non-linear LC series resonator that quantitatively describes these figures of merit without fitting parameters. Our work illustrates the advantage of using array-based JPA since a single-SQUID device showing the same bandwidth and resonant frequency would display a saturation power 15 dB lower.Comment: 12 pages, 9 figures, Appendices include

    Kerr non-linearity in a superconducting Josephson metamaterial

    Full text link
    We present a detailed experimental and theoretical analysis of the dispersion and non-linear Kerr frequency shifts of plasma modes in a one-dimensional Josephson junction chain containing 500 SQUIDs in the regime of weak nonlinearity. The measured low-power dispersion curve agrees perfectly with the theoretical model if we take into account the Kerr renormalisation of the bare frequencies and the long-range nature of the island charge screening by a remote ground plane. We measured the self- and cross-Kerr shifts for the frequencies of the eight lowest modes in the chain. We compare the measured Kerr coefficients with theory and find good agreement

    A way to measure electron spin-flipping at F/N interfaces and application to Co/Cu

    Full text link
    We describe a technique, using the current-perpendicular-to-plane (CPP) geometry, to measure the parameter delta(F/N), characterizing flipping of electron spins at a ferromagnetic/non-magnetic (F/N) metallic interface. The technique involves measuring the CPP magnetoresistance of a sample containing a ferromagnetically coupled [F/N]x n multilayer embedded within the 20 nm thick central Cu layer of a symmetric Py-based, double exchange-biased spin-valve. To focus on delta(F/N), the F- and N-layers are made thin compared to their spin-diffusion lengths. We test the technique using F/N = Co/Cu. Analysing with no adjustable parameters, gives inconsistency with delta(Co/Cu) = 0, but consistency with our prior value of delta(Co/Cu) = 0.25 (+/- 0.1). Taking delta(Co/Cu) as adjustable gives delta(Co/Cu) = 0.33 (+0.03/-0.08).Comment: 3 pages, 2 figures. To appear in Applied Physics Letter

    Fast high fidelity quantum non-demolition qubit readout via a non-perturbative cross-Kerr coupling

    Full text link
    Qubit readout is an indispensable element of any quantum information processor. In this work, we experimentally demonstrate a non-perturbative cross-Kerr coupling between a transmon and a polariton mode which enables an improved quantum non-demolition (QND) readout for superconducting qubits. The new mechanism uses the same experimental techniques as the standard QND qubit readout in the dispersive approximation, but due to its non-perturbative nature, it maximizes the speed, the single-shot fidelity and the QND properties of the readout. In addition, it minimizes the effect of unwanted decay channels such as the Purcell effect. We observed a single-shot readout fidelity of 97.4% for short 50 ns pulses, and we quantified a QND-ness of 99% for long measurement pulses with repeated single-shot readouts

    Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds

    Get PDF
    Background The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Methods Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. Results In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Conclusions Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available

    Qubit readout using in-situ bifurcation of a nonlinear dissipative polariton in the mesoscopic regime

    Full text link
    We explore the nonlinear response to a strong drive of polaritonic meters for superconducting qubit state readout. The two polaritonic meters result from the strong hybridization between a bosonic mode of a 3D microwave cavity and an anharmonic ancilla mode of the superconducting circuit. Both polaritons inherit a self-Kerr nonlinearity UU, and decay rate κ\kappa from the ancilla and cavity, respectively. They are coupled to a transmon qubit via a non-perturbative cross-Kerr coupling resulting in a large cavity pull 2χ>κ, U2\chi > \kappa, ~U. By applying magnitic flux, the ancilla mode frequency varies modifying the hybridization conditions and thus the properties of the readout polariton modes. Using this, the hybridisation is tuned in the mesoscopic regime of the non-linear dissipative polariton where the self-Kerr and decay rates of one polariton are similar U∼κU\sim \kappa leading to bistability and bifurcation behavior at small photon number. This bistability and bifurcation behavior depends on the qubit state and we report qubit state readout in a latching-like manner thanks to the bifurcation of the upper polariton. Without any external quantum-limited amplifier, we obtain a single-shot fidelity of 98.6%98.6\% in a 500500 ns integration time

    Design of a Bovine Low-Density SNP Array Optimized for Imputation

    Get PDF
    The Illumina BovineLD BeadChip was designed to support imputation to higher density genotypes in dairy and beef breeds by including single-nucleotide polymorphisms (SNPs) that had a high minor allele frequency as well as uniform spacing across the genome except at the ends of the chromosome where densities were increased. The chip also includes SNPs on the Y chromosome and mitochondrial DNA loci that are useful for determining subspecies classification and certain paternal and maternal breed lineages. The total number of SNPs was 6,909. Accuracy of imputation to Illumina BovineSNP50 genotypes using the BovineLD chip was over 97% for most dairy and beef populations. The BovineLD imputations were about 3 percentage points more accurate than those from the Illumina GoldenGate Bovine3K BeadChip across multiple populations. The improvement was greatest when neither parent was genotyped. The minor allele frequencies were similar across taurine beef and dairy breeds as was the proportion of SNPs that were polymorphic. The new BovineLD chip should facilitate low-cost genomic selection in taurine beef and dairy cattle

    Propagating Quantum Microwaves: Towards Applications in Communication and Sensing

    Full text link
    The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-optical platform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and -- we hope -- to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment

    The Hierarchical Age-Period-Cohort model: Why does it find the results that it finds?

    Get PDF
    It is claimed the hierarchical-age–period–cohort (HAPC) model solves the age–period–cohort (APC) identification problem. However, this is debateable; simulations show situations where the model produces incorrect results, countered by proponents of the model arguing those simulations are not relevant to real-life scenarios. This paper moves beyond questioning whether the HAPC model works, to why it produces the results it does. We argue HAPC estimates are the result not of the distinctive substantive APC processes occurring in the dataset, but are primarily an artefact of the data structure—that is, the way the data has been collected. Were the data collected differently, the results produced would be different. This is illustrated both with simulations and real data, the latter by taking a variety of samples from the National Health Interview Survey (NHIS) data used by Reither et al. (Soc Sci Med 69(10):1439–1448, 2009) in their HAPC study of obesity. When a sample based on a small range of cohorts is taken, such that the period range is much greater than the cohort range, the results produced are very different to those produced when cohort groups span a much wider range than periods, as is structurally the case with repeated cross-sectional data. The paper also addresses the latest defence of the HAPC model by its proponents (Reither et al. in Soc Sci Med 145:125–128, 2015a). The results lend further support to the view that the HAPC model is not able to accurately discern APC effects, and should be used with caution when there appear to be period or cohort near-linear trends

    Electoral Volatility, Political Sophistication, Trust and Efficacy

    Get PDF
    In this article we investigate voter volatility and analyze the causes and motives of switching vote intentions. We test two main sets of variables linked to volatility in literature; political sophistication and ‘political (dis)satisfaction’. Results show that voters with low levels of political efficacy tend to switch more often, both within a campaign and between elections. In the analysis we differentiate between campaign volatility and inter-election volatility and by doing so show that the dynamics of a campaign have a profound impact on volatility. The campaign period is when the lowly sophisticated switch their vote intention. Those with higher levels of interest in politics have switched their intention before the campaign has started. The data for this analysis are from the three wave PartiRep Belgian Election Study (2009)
    • …
    corecore