26 research outputs found

    Systems biology of platelet-vessel wall interactions

    Get PDF
    Platelets are small, anucleated cells that participate in primary hemostasis by forming a hemostatic plug at the site of a blood vessel's breach, preventing blood loss. However, hemostatic events can lead to excessive thrombosis, resulting in life-threatening strokes, emboli, or infarction. Development of multi-scale models coupling processes at several scales and running predictive model simulations on powerful computer clusters can help interdisciplinary groups of researchers to suggest and test new patient-specific treatment strategies

    Neutrophils can Promote Clotting via FXI and Impact Clot Structure via Neutrophil Extracellular Traps in a Distinctive Manner in vitro

    Get PDF
    Neutrophils and neutrophil extracellular traps (NETs) have been shown to be involved in coagulation. However, the interactions between neutrophils or NETs and fibrin(ogen) in clots, and the mechanisms behind these interactions are not yet fully understood. In this in vitro study, the role of neutrophils or NETs on clot structure, formation and dissolution was studied with a combination of confocal microscopy, turbidity and permeation experiments. Factor (F)XII, FXI and FVII-deficient plasmas were used to investigate which factors may be involved in the procoagulant effects. We found both neutrophils and NETs promote clotting in plasma without the addition of other coagulation triggers, but not in purified fibrinogen, indicating that other factors mediate the interaction. The procoagulant effects of neutrophils and NETs were also observed in FXII- and FVII-deficient plasma. In FXI-deficient plasma, only the procoagulant effects of NETs were observed, but not of neutrophils. NETs increased the density of clots, particularly in the vicinity of the NETs, while neutrophils-induced clots were less stable and more porous. In conclusion, NETs accelerate clotting and contribute to the formation of a denser, more lysis resistant clot architecture. Neutrophils, or their released mediators, may induce clotting in a different manner to NETs, mediated by FXI

    Tissue damage from neutrophil-induced oxidative stress in COVID-19

    No full text
    International audienceThe high neutrophil to lymphocyte ratio observed in critically ill patients with COVID-19 is associated with excessive levels of reactive oxygen species (ROS), which promote a cascade of biological events that drive pathological host responses. ROS induce tissue damage, thrombosis and red blood cell dysfunction, which contribute to COVID-19 disease severity. We suggest that free radical scavengers could be beneficial for the most vulnerable patients

    Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development

    No full text
    Abstract Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance

    Fibrinogen and red blood cells in venous thrombosis

    No full text
    Deep vein thrombosis and pulmonary embolism, collectively termed venous thromboembolism (VTE), affect over 1 million Americans each year. VTE is triggered by inflammation and blood stasis leading to the formation of thrombi rich in fibrin and red blood cells (RBCs). However, little is known about mechanisms regulating fibrin and RBC incorporation into venous thrombi, or how these components mediate thrombus size or resolution. Both elevated circulating fibrinogen (hyperfibrinogenemia) and abnormal fibrin(ogen) structure and function, including increased fibrin network density and resistance to fibrinolysis, have been observed in plasmas from patients with VTE. Abnormalities in RBC number and/or function have also been associated with VTE risk. RBC contributions to VTE are thought to stem from their effects on blood viscosity and margination of platelets to the vessel wall. More recent studies suggest RBCs also express phosphatidylserine, support thrombin generation, and decrease fibrinolysis. RBC interactions with fibrin(ogen) and cells, including platelets and endothelial cells, may also promote thrombus formation. The contributions of fibrin(ogen) and RBCs to the pathophysiology of VTE warrants further investigation
    corecore