1,688 research outputs found

    Emergence of foams from the breakdown of the phase field crystal model

    Full text link
    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foam-like behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann's rule for two-dimensional dry foams, and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously-reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.Comment: 4 pages, 4 figure

    Edge Elimination in TSP Instances

    Full text link
    The Traveling Salesman Problem is one of the best studied NP-hard problems in combinatorial optimization. Powerful methods have been developed over the last 60 years to find optimum solutions to large TSP instances. The largest TSP instance so far that has been solved optimally has 85,900 vertices. Its solution required more than 136 years of total CPU time using the branch-and-cut based Concorde TSP code [1]. In this paper we present graph theoretic results that allow to prove that some edges of a TSP instance cannot occur in any optimum TSP tour. Based on these results we propose a combinatorial algorithm to identify such edges. The runtime of the main part of our algorithm is O(n2logn)O(n^2 \log n) for an n-vertex TSP instance. By combining our approach with the Concorde TSP solver we are able to solve a large TSPLIB instance more than 11 times faster than Concorde alone

    Equilibrium spherically curved 2D Lennard-Jones systems

    Get PDF
    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N<800) equilibrium configurations are traced as a function of the curvature radius R. Sharp jumps for tiny changes in R between trajectories with major differences in topological structure correspond to avalanche-like transitions. For a typical case, N=25, equilibrium configurations fall on smooth trajectories in state space which can be traced in the E-R plane. The trajectories show-up with local energy minima, from which growth in N at steady curvature can develop.Comment: 10 pages, 2 figures, to be published in Journal of Chemical Physic

    Constant Rank Bimatrix Games are PPAD-hard

    Full text link
    The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash equilibrium (NE) of a rank-00, i.e., zero-sum game is equivalent to linear programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an FPTAS for constant rank games, and asked if there exists a polynomial time algorithm to compute an exact NE. Adsul et al. (2011) answered this question affirmatively for rank-11 games, leaving rank-2 and beyond unresolved. In this paper we show that NE computation in games with rank 3\ge 3, is PPAD-hard, settling a decade long open problem. Interestingly, this is the first instance that a problem with an FPTAS turns out to be PPAD-hard. Our reduction bypasses graphical games and game gadgets, and provides a simpler proof of PPAD-hardness for NE computation in bimatrix games. In addition, we get: * An equivalence between 2D-Linear-FIXP and PPAD, improving a result by Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD. * NE computation in a bimatrix game with convex set of Nash equilibria is as hard as solving a simple stochastic game. * Computing a symmetric NE of a symmetric bimatrix game with rank 6\ge 6 is PPAD-hard. * Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP) piecewise-linear function is PPAD-hard. The status of rank-22 games remains unresolved

    On the role of confinement on solidification in pure materials and binary alloys

    Full text link
    We use a phase-field model to study the effect of confinement on dendritic growth, in a pure material solidifying in an undercooled melt, and in the directional solidification of a dilute binary alloy. Specifically, we observe the effect of varying the vertical domain extent (δ\delta) on tip selection, by quantifying the dendrite tip velocity and curvature as a function of δ\delta, and other process parameters. As δ\delta decreases, we find that the operating state of the dendrite tips becomes significantly affected by the presence of finite boundaries. For particular boundary conditions, we observe a switching of the growth state from 3-D to 2-D at very small δ\delta, in both the pure material and alloy. We demonstrate that results from the alloy model compare favorably with those from an experimental study investigating this effect.Comment: 13 pages, 9 figures, 3 table

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games

    Polyhedral Analysis using Parametric Objectives

    Get PDF
    The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output

    Subtropical Real Root Finding

    Get PDF
    We describe a new incomplete but terminating method for real root finding for large multivariate polynomials. We take an abstract view of the polynomial as the set of exponent vectors associated with sign information on the coefficients. Then we employ linear programming to heuristically find roots. There is a specialized variant for roots with exclusively positive coordinates, which is of considerable interest for applications in chemistry and systems biology. An implementation of our method combining the computer algebra system Reduce with the linear programming solver Gurobi has been successfully applied to input data originating from established mathematical models used in these areas. We have solved several hundred problems with up to more than 800000 monomials in up to 10 variables with degrees up to 12. Our method has failed due to its incompleteness in less than 8 percent of the cases

    Proof Theory and Ordered Groups

    Full text link
    Ordering theorems, characterizing when partial orders of a group extend to total orders, are used to generate hypersequent calculi for varieties of lattice-ordered groups (l-groups). These calculi are then used to provide new proofs of theorems arising in the theory of ordered groups. More precisely: an analytic calculus for abelian l-groups is generated using an ordering theorem for abelian groups; a calculus is generated for l-groups and new decidability proofs are obtained for the equational theory of this variety and extending finite subsets of free groups to right orders; and a calculus for representable l-groups is generated and a new proof is obtained that free groups are orderable
    corecore