1,688 research outputs found
Emergence of foams from the breakdown of the phase field crystal model
The phase field crystal (PFC) model captures the elastic and topological
properties of crystals with a single scalar field at small undercooling. At
large undercooling, new foam-like behavior emerges. We characterize this foam
phase of the PFC equation and propose a modified PFC equation that may be used
for the simulation of foam dynamics. This minimal model reproduces von
Neumann's rule for two-dimensional dry foams, and Lifshitz-Slyozov coarsening
for wet foams. We also measure the coordination number distribution and find
that its second moment is larger than previously-reported experimental and
theoretical studies of soap froths, a finding that we attribute to the wetness
of the foam increasing with time.Comment: 4 pages, 4 figure
Edge Elimination in TSP Instances
The Traveling Salesman Problem is one of the best studied NP-hard problems in
combinatorial optimization. Powerful methods have been developed over the last
60 years to find optimum solutions to large TSP instances. The largest TSP
instance so far that has been solved optimally has 85,900 vertices. Its
solution required more than 136 years of total CPU time using the
branch-and-cut based Concorde TSP code [1]. In this paper we present graph
theoretic results that allow to prove that some edges of a TSP instance cannot
occur in any optimum TSP tour. Based on these results we propose a
combinatorial algorithm to identify such edges. The runtime of the main part of
our algorithm is for an n-vertex TSP instance. By combining our
approach with the Concorde TSP solver we are able to solve a large TSPLIB
instance more than 11 times faster than Concorde alone
Equilibrium spherically curved 2D Lennard-Jones systems
To learn about basic aspects of nano-scale spherical molecular shells during
their formation, spherically curved two-dimensional N-particle Lennard-Jones
systems are simulated, studying curvature evolution paths at zero-temperature.
For many N-values (N<800) equilibrium configurations are traced as a function
of the curvature radius R. Sharp jumps for tiny changes in R between
trajectories with major differences in topological structure correspond to
avalanche-like transitions. For a typical case, N=25, equilibrium
configurations fall on smooth trajectories in state space which can be traced
in the E-R plane. The trajectories show-up with local energy minima, from which
growth in N at steady curvature can develop.Comment: 10 pages, 2 figures, to be published in Journal of Chemical Physic
Constant Rank Bimatrix Games are PPAD-hard
The rank of a bimatrix game (A,B) is defined as rank(A+B). Computing a Nash
equilibrium (NE) of a rank-, i.e., zero-sum game is equivalent to linear
programming (von Neumann'28, Dantzig'51). In 2005, Kannan and Theobald gave an
FPTAS for constant rank games, and asked if there exists a polynomial time
algorithm to compute an exact NE. Adsul et al. (2011) answered this question
affirmatively for rank- games, leaving rank-2 and beyond unresolved.
In this paper we show that NE computation in games with rank , is
PPAD-hard, settling a decade long open problem. Interestingly, this is the
first instance that a problem with an FPTAS turns out to be PPAD-hard. Our
reduction bypasses graphical games and game gadgets, and provides a simpler
proof of PPAD-hardness for NE computation in bimatrix games. In addition, we
get:
* An equivalence between 2D-Linear-FIXP and PPAD, improving a result by
Etessami and Yannakakis (2007) on equivalence between Linear-FIXP and PPAD.
* NE computation in a bimatrix game with convex set of Nash equilibria is as
hard as solving a simple stochastic game.
* Computing a symmetric NE of a symmetric bimatrix game with rank is
PPAD-hard.
* Computing a (1/poly(n))-approximate fixed-point of a (Linear-FIXP)
piecewise-linear function is PPAD-hard.
The status of rank- games remains unresolved
On the role of confinement on solidification in pure materials and binary alloys
We use a phase-field model to study the effect of confinement on dendritic
growth, in a pure material solidifying in an undercooled melt, and in the
directional solidification of a dilute binary alloy. Specifically, we observe
the effect of varying the vertical domain extent () on tip selection,
by quantifying the dendrite tip velocity and curvature as a function of
, and other process parameters. As decreases, we find that the
operating state of the dendrite tips becomes significantly affected by the
presence of finite boundaries. For particular boundary conditions, we observe a
switching of the growth state from 3-D to 2-D at very small , in both
the pure material and alloy. We demonstrate that results from the alloy model
compare favorably with those from an experimental study investigating this
effect.Comment: 13 pages, 9 figures, 3 table
Phase transition for cutting-plane approach to vertex-cover problem
We study the vertex-cover problem which is an NP-hard optimization problem
and a prototypical model exhibiting phase transitions on random graphs, e.g.,
Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes
of the solution space structure, e.g, for the ER ensemble at connectivity
c=e=2.7183 from replica symmetric to replica-symmetry broken. For the
vertex-cover problem, also the typical complexity of exact branch-and-bound
algorithms, which proceed by exploring the landscape of feasible
configurations, change close to this phase transition from "easy" to "hard". In
this work, we consider an algorithm which has a completely different strategy:
The problem is mapped onto a linear programming problem augmented by a
cutting-plane approach, hence the algorithm operates in a space OUTSIDE the
space of feasible configurations until the final step, where a solution is
found. Here we show that this type of algorithm also exhibits an "easy-hard"
transition around c=e, which strongly indicates that the typical hardness of a
problem is fundamental to the problem and not due to a specific representation
of the problem.Comment: 4 pages, 3 figure
On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms
We give a lower bound on the iteration complexity of a natural class of
Lagrangean-relaxation algorithms for approximately solving packing/covering
linear programs. We show that, given an input with random 0/1-constraints
on variables, with high probability, any such algorithm requires
iterations to compute a
-approximate solution, where is the width of the input.
The bound is tight for a range of the parameters .
The algorithms in the class include Dantzig-Wolfe decomposition, Benders'
decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for
lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988]
and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy
argument to show an analogous lower bound on the support size of
-approximate mixed strategies for random two-player zero-sum
0/1-matrix games
Polyhedral Analysis using Parametric Objectives
The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output
Subtropical Real Root Finding
We describe a new incomplete but terminating method for real root finding for
large multivariate polynomials. We take an abstract view of the polynomial as
the set of exponent vectors associated with sign information on the
coefficients. Then we employ linear programming to heuristically find roots.
There is a specialized variant for roots with exclusively positive coordinates,
which is of considerable interest for applications in chemistry and systems
biology. An implementation of our method combining the computer algebra system
Reduce with the linear programming solver Gurobi has been successfully applied
to input data originating from established mathematical models used in these
areas. We have solved several hundred problems with up to more than 800000
monomials in up to 10 variables with degrees up to 12. Our method has failed
due to its incompleteness in less than 8 percent of the cases
Proof Theory and Ordered Groups
Ordering theorems, characterizing when partial orders of a group extend to
total orders, are used to generate hypersequent calculi for varieties of
lattice-ordered groups (l-groups). These calculi are then used to provide new
proofs of theorems arising in the theory of ordered groups. More precisely: an
analytic calculus for abelian l-groups is generated using an ordering theorem
for abelian groups; a calculus is generated for l-groups and new decidability
proofs are obtained for the equational theory of this variety and extending
finite subsets of free groups to right orders; and a calculus for representable
l-groups is generated and a new proof is obtained that free groups are
orderable
- …
