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To learn about the basic aspects of nanoscale spherical molecular shells during their formation,
spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying
curvature evolution paths at zero temperature. For many N values (N<800) equilibrium
configurations are traced as a function of the curvature radius R. Sharp jumps for tiny changes in R
between trajectories with major differences in topological structure correspond to avalanche-like
transitions. For a typical case, N=25, equilibrium configurations fall on smooth trajectories in state
space which can be traced in the E-R plane. The trajectories show up with local energy minima,
from which growth in N at steady curvature can develop. © 2005 American Institute of Physics.

[DOI: 10.1063/1.2007707]

I. INTRODUCTION

In vitro self-organization in aqueous solution of nanos-
cale spherical shells, like various types of nanovesicles' ™
and viral capsids,5 is a thermodynamic process driven by
overall free-energy minimization. The resulting shell has in-
herent tendencies towards (a) crystalline structure,”™ (b) glo-
bal polyhedral symmetry.q‘“ and (c) discrete sizes,"'*" thus
discrete curvatures.

A compelling question is whether during the thermody-
namic growth a transient uncompleted (open) shell of a given
N prefers intrinsically to adopt a specific equilibrium radius
of curvature (R), and whether this radius—on the basis of
molecular packing order already—may be approximately
stable during (part of) that growth. The occurrence of local
minima in the mean (per particle) potential energy (£) of an
emerging shell as a function of all internal degrees of
freedom—including R—along the evolution path in state
space, could thus be significant for steady curvature during
the growth in N.

In this paper we approach the problem in a much sim-
plified model that allows systematic generic studies. The
sphericity of the shell, in reality due to intrinsic 3D proper-
ties of the optimally closely packed molecular subunits, is
built-in as a global geometrical constraint. We perform com-
puter experiments with freely relaxing—possibly open—
spherically curved zero-thickness monolayers of identical
molecules, studying the structural properties in relation with
N and R. Our approach is most natural for monolayer nano-
wheel vesicles,’ but it is as well relevant for tiny bilayer
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vesicles, where the laterally most densely packed pseudoc-
rystalline inner lipid head group sublayer can act as mono-
layer “backbone.”

As model we use two-dimensional (2D) Lennard-Jones
(LJ) N-particle systems on a spherical surface with flexible
radius at zero temperature.*'* The LJ potential V;;=r;'"?
—2r;-6 between two particles i and j with Euclidean distance
r;; energetically favors close regular packing with essentially
unit distance between neighboring particles.® The LJ form in
the constrained system acts as an effective interaction mim-
icking the real complex of interactions. It allows a compre-
hensive systematic exploration while keeping salient features
of real systems. The present work arises from a series of
computational studies® on 2D spherical crystallization in LJ
systems over a broad range of N, involving thermodynamic
behavior and zero-temperature global energy minimization.
The LJ systems follow local equilibrium paths in state space,
realistically allowing for local minimum “hang ups” in
evolving configurations.

When many LJ particles are randomly spread over a flat
surface they aggregate into an approximately homogeneous
configuration, a major fraction of the particles being trapped
inside the bulk (interior). Edge particles have higher energy
than bulk particles, giving rise to edge tension, the 2D
equivalent of surface tension. Minimizing edge energy, flat
aggregates become approximately circular patches. Minimiz-
ing the overall potential energy, the bulk becomes an essen-
tially regular hexagonal lattice. Allowing for spherical cur-
vature, the 2D system can further decrease the energy by
reducing the edge length and by a rising attraction from LJ
tails of remote particles (the LJ forces acting in 3D). This
energy gain by curvature, however, balances against increas-
ing strain energy of the bulk because of less favorable
packing.

Our question becomes whether—thanks to the interplay
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of these R-dependent nonlinear effects—equilibrium radii
R.q can be found where relaxation after any small change in
curvature raises E, and freely variable R leads the system
back to the same equilibrium radius. If such local energy
minima in open configurations are thermodynamically sig-
nificant, they can stabilize transient states along a path of
growing N. This is supported by a LJ sludy,ls showing that
closed global minimum energy N-particle configurations
(covering the whole sphere) strongly correlate with specific
open local minimum configurations of lower N.

Il. METHODS

In our experiments, each time the radius R is changed by
a small step, the particle system is relaxed by
minimizing—at the new R value—the mean energy, which
implies reaching the nearest equilibrium configuration. The
system is thus evolved in curvature, while staying in equilib-
rium with changing R. For relaxation (equilibration of forces
and energy minimization), a steepest descent (SD)
algorimml is applied while for aﬁgregarion a Metropolis
Monte Carlo simulated annealing'® (SA) optimization is
used. The latter method enhances the probability that the
system ends up in a global energy minimum'® (GEM) rather
than in a local secondary energy minimum. The 2D topology
of a configuration is defined by the Voronoi nearest-
neighbors method,' giving each particle a coordination
number (CN), which is 6 everywhere for a flat (hexagonal)
GEM configuration. The value CN-6 is denoted as the dis-
clination charge—short d charge—of a particle. In a 2D to-
pological structure any single built-in defect—disclination or
dislocation (tightly bound pair of disclinations with opposite
d charge)—can be displaced but not removed, except by its
annihilation as part of a set of converging complementary
defects or by moving it all the way to the edge. During the
transformation of a flat GEM lattice to a closed shell a net
total d charge of —12 must be incorporated in the full
Voronoi lattice. In addition, dislocations have the function of
lowering the strain energy in total, by distributing it locally
more evenly.

How much the configurations change during relaxation
after a step AR can be expressed as the mean Euclidean
distance F traveled between the associated sets of coordinates
Xp and Xg,ag in configuration space (mean taken per particle
and per percent change in curvature),

]
7= (|AR|/RN) \/2 (X, — Xgeard)’
i=l

lll. COMPUTER EXPERIMENTS

A. From flat to spherical

In the first series of experiment we explore gross
changes in the topological and geometrical structures and the
corresponding energy with monotonously decreasing R. For
hundreds of runs with N <800 an initial, circularlike aggre-
gate is prepared from a flat regular hexagonal lattice with
unit spacing (GEM for infinite N in flat 2D). In the experi-
ments R is decreased in 1% steps, each time the configura-
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tion is being projected onto the new sphere and then relaxed
using the SD method. The decrease in R is continued until
the system is compressed considerably. A system of particu-
lar N follows a “standard” (for that N) evolution path through
state space and through the E-R plane.

B. Example, N=25

Curved lattices unbiased by any initial configuration and
path history are simulated while starting in SA mode at high
temperatures (7=10) in a random configuration and then ag-
gregated by cooling down the system in 5% AT/T steps. SD
is applied as final tuning. This study is done for a fypical
“unmagic” N value, N=25. In 1300 runs radii are randomly
chosen between R=1.3 and R=2.

The equilibrium points in E-R space align over a range
of R values along distinct smooth trajectories: lines which
correspond to continuous sets of topologically and geometri-
cally closely similar equilibrium configurations.

C. Tracing up and down in curvature

The central question of the current paper, whether trajec-
tories of the system lining up closely related configurations
can provide a stable system against a freely variable R, is
addressed in a third type of experiment. Starting from par-
ticular open N=25 configurations obtained in the second ex-
periment, trajectories are traced (with relaxation) step by step
in R in both directions, and the structure is investigated.

IV. RESULTS AND DISCUSSION
A. Energy trends

In the first study a general energy trend is found for all N
values, as illustrated by three typical examples: for N=6, 50,
and 350 in Fig. 1 (left column). As expected, the most promi-
nent feature is a deep global minimum along the followed
E-R path. Having started from a flat regular configuration
while systematically decreasing R, the particles cover in
close packing an increasing part of the sphere until at the
closure radius R, the lowest E along the E-R path is reached.
At this stage any uncovered area—and thus any edge—has
disappeared. We note that, except for details, the structure is
not biased significantly by the initial configuration.

The energy difference AE,. between the
asymptotic value and the deep minimum represents the en-
ergy gain of closure. Additional structures are visible: sec-
ondary, local, minima and sharp downward jumps at R>R,.

Towards smaller radii R <R,, the system comes under an
external pressure and the density increases. The LJ repulsive
core between neighboring particles then increasingly domi-
nates the energy, the energy rises steeply, independent of the
detailed configuration.

The energy of a configuration can be approximated as
E=(Npyix€ouik+ Nedge €cdge) /N,  Where Ny +Negge=N, €k
=-3.382 being the lowest possible value corresponding to an
infinite flat regular hexagonal lattice, while €4, is typically
half of that value. Due to the impossibility of a fully regular
hexagonal packing, &, is higher on a curved surface. The
unfavorable edge energy forms the main driving force for

R—>
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FIG. 1. Data from the first series of
experiments: from top to bottom for
N=6, 50, and 350 the mean potential
energy (E) (at left), and the mean Eu-
clidean distance (MED,7) traveled in
configuration space during equilibra-
tion after 1% downward steps in cur-
vature radius (R). The system was ini-
tiated in a flat regular configuration.
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curvature and shell closure, although—due to the topological
rearrangement—normally a barrier between the flat and
curved states stands in the way. Consequently, for the larger
N values, starting from the flat GEM configuration, indeed
dE/dR is negative, meaning that at sufficiently low T such a
flat LJ system is locally stable against curvature. An excep-
tion is the extreme case, N=6, where the initially flat LJ
system can immediately gain energy by curving. A tiny jump
in E (at R=1.36) goes with a discontinuity in the dE/dR
slope. Here already we observe a secondary minimum along
the standard E-R path. For N=50 below R=4, the local en-
ergy minima and jumps are visible. At R~ 1.87 the system
closes over the sphere. For N=350 below R=13, many
minima and many jumps show up. At R.=35 the system
closes. In the second experiment (N=25), in Fig. 2(a), the
independently obtained E values for fixed, randomly chosen,
R values align along smooth lines in the E-R plane.

B. Euclidean distance

Energy jumps (Fig. 1 at left) go with structural transi-
tions visible as spikes in the mean Euclidean distance per
particle per percent, A(R) (Fig. 1 at right). At R<R,, the
particles hardly move anymore over the sphere, all flexibility
being lost due to the external pressure counterbalanced by
the repulsive core. The smooth background in #(R) reflects
small adjustments of an essentially stable configuration after
a curvature step. It can be fully suppressed by reducing the
step size, which turns out to leave the transitions essentially

5 :‘rné § 1011121314

unaffected; the sharpness of the transitions remains within a
step size of even an order of magnitude smaller than that
applied in the current data.

C. Closure radius

The radius R, at which the system closes can be pre-
dicted by requiring the packing density on the spherical sur-
face to be (almost) the same as for a flat lattice, R.(N)
=v(N/47)cos(7/6). For N=6, 25, 50, and 350 it follows
that R.(N)=0.64, 1.3, 1.9, and 4.9, respectively. These values
agree with the data (Fig. 1 left) except for small N, where the
packing is far less optimal than for a flat GEM lattice.

D. Structural transitions and topological defects

Energy jumps between different trajectories involve a
major global rearrangement.

With successively applied small steps in curvature fol-
lowed by relaxation, the system usually undergoes only mi-
nor local redistributions, while strain accumulates in parts of
the lattice. At some curvature steps, however, an avalanche
of sequential displacements over a major part of the system
is triggered by local instabilities, while releasing much of the
built-up strain. A small change in R may thus enforce a struc-
tural transition to a configuration, in which both the strain
and the 2D topological (defect) structure have been drasti-
cally altered. An extensive systematic study of the topologi-
cal defect structure as a function of N up to 200 is available.®
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FIG. 2. Mean energy (E) vs curvature radius (R) for N=25. From top to
bottom: (a) second experiment: energy minima at random fixed values of R,
found in unbiased searches, each with random initial configuration, applying
SA and SD; (b) third experiment: example of tracing through E-R space by
1% step in R using SD. The arrows indicate the R step direction. The inset
shows a clear-cut case of hysteresis; (c) parts of trajectories exhibiting local
minima as a function of R.

The transitions come along with incorporation or re-
moval of defects as a function of curvature. Energy barriers
are present between configurations with different topological
structure. For the transition to take place requires the system
to climb the barrier to a threshold before starting an ava-
lanche of particle moves. The threshold R value depends on
the barrier side, causing hysteresis.

Starting from an essentially circular patch with flat regu-
lar packing, the “unstable” radius R,, where—with increas-
ing curvature—the first structural transition occurs, is mod-
eled as $2n,, arcsin(a@)=sin(2n,,, arcsin(a)),® where «a
=1/(2R,), ny,y is essentially the largest completed hexago-
nal ring, and S can be taken from the data for a single spe-
cific N value (see Table ).

E. Open configurations

The points in Fig. 2(a) at large R cover a broad range in
energy, corresponding to a great variety of open configura-
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TABLE 1. The radius R, where the trajectory becomes unstable for increas-
ing curvature starting from a flat regular distribution for N=6, 50, 350, and
500, compared with the estimates from the simple model with S calibrated at
N=350.

N n (max) R, (data) R, (model)
6 1 1.37 1.34
50 3 395 4.11
350 9 123 123
500 11 15.6 15.0

tions and edge arrangements. As R decreases, the edge be-
comes smaller and the variation decreases. Any flexibility
essentially disappears below R, due to the strong constraints
for a closed spherical configuration.

F. Secondary minima

Fig. 2(b) shows E-R trajectories from the third experi-
ment, starting from a specific configuration (near the mini-
mum at R= 1.5) from the second experiment. Here the sys-
tem is traced up and down in R. Indeed, the trajectories in the
E-R plane connect unbiased solutions, and—Ilike in the first
experiment—jumps and the secondary minima occur. The
secondary minima visible in Fig. 2(c), are obtained starting
from the configurations of the second experiment [Fig. 2(c)],
and ftracing in R up and down until a jump occurs. The
minima have a typical depth of 10% of the closure energy
AE,. At nonzero T the thermodynamic significance of such
minima should be judged with respect to both kT and AE.,.

G. Variable N

The finding of distinct locally stable open configurations
for fixed N raises the expectation that any discrete curvature
may remain, or change smoothly, during growth when par-
ticles are added. A study of this type'® indeed indicates that
discrete locally stable configuration trajectories exist as a
function of both R and N, where the bulk packing remains
essentially the same.

V. CONCLUSION

In conclusion, for fixed N two-dimensional spherical
Lennard-Jones systems at zero temperature, the global en-
ergy minimum with decreasing curvature radius R is ap-
proached through sharp transitions with major rearrange-
ments. These transitions bring in topological defects
connected with curvature. The curvature range of events rel-
evant for self-assembly, R,~R,., is consistent with simple
models. Apart from the closed (global) minimum energy
configuration, secondary, local minima show up at larger R
values, with an open configuration. This phenomenon—here
shown for N=25—occurs naturally as a consequence of op-
timal packing topologies. During growth towards a complete
shell such minima can capture “threads™ of steady curvature
along with growth in N, while staying in equilibrium. The
present results and methods can help guide further generic
studies of the self-organization in complex spherical molecu-
lar shells.
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