The Traveling Salesman Problem is one of the best studied NP-hard problems in
combinatorial optimization. Powerful methods have been developed over the last
60 years to find optimum solutions to large TSP instances. The largest TSP
instance so far that has been solved optimally has 85,900 vertices. Its
solution required more than 136 years of total CPU time using the
branch-and-cut based Concorde TSP code [1]. In this paper we present graph
theoretic results that allow to prove that some edges of a TSP instance cannot
occur in any optimum TSP tour. Based on these results we propose a
combinatorial algorithm to identify such edges. The runtime of the main part of
our algorithm is O(n2logn) for an n-vertex TSP instance. By combining our
approach with the Concorde TSP solver we are able to solve a large TSPLIB
instance more than 11 times faster than Concorde alone