458 research outputs found

    On the Microscopic Origin of Cholesteric Pitch

    Get PDF
    We present a microscopic analysis of the instability of the nematic phase to chirality when molecular chirality is introduced perturbatively. We show that previously neglected short-range biaxial correlations play a crucial role in determining the cholesteric pitch. We propose an order parameter which quantifies the chirality of a molecule.Comment: RevTeX 3.0, 4 pages, one included eps figure. Published versio

    Chiral Crystal Growth under Grinding

    Full text link
    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown that Ostwald ripening without grinding is extremely slow to select chirality, if possible. Grinding alone also cannot achieve chirality selection. For the accomplishment of homochirality, we need an enhanced chirality change on crystalline surface. With this "autocatalytic effect" and the recycling of monomers due to rinding, an exponential increase of crystal enantiomeric excess to homochiral state is realized.Comment: 10 pages, 5 figure

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure

    Chirality transfer and stereo-selectivity of imprinted cholesteric networks

    Full text link
    Imprinting of cholesteric textures in a polymer network is a method of preserving a macroscopically chiral phase in a system with no molecular chirality. By modifying the elastics properties of the network, the resulting stored helical twist can be manipulated within a wide range since the imprinting efficiency depends on the balance between the elastics constants and twisting power at network formation. One spectacular property of phase chirality imprinting is the created ability of the network to adsorb preferentially one stereo-component from a racemic mixture. In this paper we explore this property of chirality transfer from a macroscopic to the molecular scale. In particular, we focus on the competition between the phase chirality and the local nematic order. We demonstrate that it is possible to control the subsequent release of chiral solvent component from the imprinting network and the reversibility of the stereo-selective swelling by racemic solvents

    Order and Frustration in Chiral Liquid Crystals

    Full text link
    This paper reviews the complex ordered structures induced by chirality in liquid crystals. In general, chirality favors a twist in the orientation of liquid-crystal molecules. In some cases, as in the cholesteric phase, this favored twist can be achieved without any defects. More often, the favored twist competes with applied electric or magnetic fields or with geometric constraints, leading to frustration. In response to this frustration, the system develops ordered structures with periodic arrays of defects. The simplest example of such a structure is the lattice of domains and domain walls in a cholesteric phase under a magnetic field. More complex examples include defect structures formed in two-dimensional films of chiral liquid crystals. The same considerations of chirality and defects apply to three-dimensional structures, such as the twist-grain-boundary and moire phases.Comment: 39 pages, RevTeX, 14 included eps figure

    The BRICS (Bronchiectasis Radiologically Indexed CT Score)- a multi-center study score for use in idiopathic and post infective bronchiectasis

    Get PDF
    OBJECTIVES: The goal of this study was to develop a simplified radiological score that could assess clinical disease severity in bronchiectasis. METHODS: The Bronchiectasis Radiologically Indexed CT Score (BRICS) was devised based on a multivariable analysis of the Bhalla score and its ability in predicting clinical parameters of severity. The score was then externally validated in six centers in 302 patients. RESULTS: A total of 184 high-resolution CT scans were scored for the validation cohort. In a multiple logistic regression model, disease severity markers significantly associated with the Bhalla score were percent predicted FEV1, sputum purulence, and exacerbations requiring hospital admission. Components of the Bhalla score that were significantly associated with the disease severity markers were bronchial dilatation and number of bronchopulmonary segments with emphysema. The BRICS was developed with these two parameters. The receiver operating-characteristic curve values for BRICS in the derivation cohort were 0.79 for percent predicted FEV1, 0.71 for sputum purulence, and 0.75 for hospital admissions per year; these values were 0.81, 0.70, and 0.70, respectively, in the validation cohort. Sputum free neutrophil elastase activity was significantly elevated in the group with emphysema on CT imaging. CONCLUSIONS: A simplified CT scoring system can be used as an adjunct to clinical parameters to predict disease severity in patients with idiopathic and postinfective bronchiectasis

    Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    Get PDF
    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Multidimensional severity assessment in bronchiectasis:An analysis of 7 European cohorts.

    Get PDF
    INTRODUCTION: Bronchiectasis is a multidimensional disease associated with substantial morbidity and mortality. Two disease-specific clinical prediction tools have been developed, the Bronchiectasis Severity Index (BSI) and the FACED score, both of which stratify patients into severity risk categories to predict the probability of mortality. METHODS: We aimed to compare the predictive utility of BSI and FACED in assessing clinically relevant disease outcomes across seven European cohorts independent of their original validation studies. RESULTS: The combined cohorts totalled 1612. Pooled analysis showed that both scores had a good discriminatory predictive value for mortality (pooled area under the curve (AUC) 0.76, 95% CI 0.74 to 0.78 for both scores) with the BSI demonstrating a higher sensitivity (65% vs 28%) but lower specificity (70% vs 93%) compared with the FACED score. Calibration analysis suggested that the BSI performed consistently well across all cohorts, while FACED consistently overestimated mortality in 'severe' patients (pooled OR 0.33 (0.23 to 0.48), p<0.0001). The BSI accurately predicted hospitalisations (pooled AUC 0.82, 95% CI 0.78 to 0.84), exacerbations, quality of life (QoL) and respiratory symptoms across all risk categories. FACED had poor discrimination for hospital admissions (pooled AUC 0.65, 95% CI 0.63 to 0.67) with low sensitivity at 16% and did not consistently predict future risk of exacerbations, QoL or respiratory symptoms. No association was observed with FACED and 6 min walk distance (6MWD) or lung function decline. CONCLUSION: The BSI accurately predicts mortality, hospital admissions, exacerbations, QoL, respiratory symptoms, 6MWD and lung function decline in bronchiectasis, providing a clinically relevant evaluation of disease severity
    corecore