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Microscopic Origin of Cholesteric Pitch

Abstract

We present a microscopic analysis of the instability of the nematic phase to chirality when molecular chirality
is introduced perturbatively. We show that for central-force interactions the previously neglected short-range
biaxial correlations play a crucial role in determining the cholesteric pitch. We propose a pseudoscalar
strength which quantifies the chirality of a molecule.
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Microscopic Origin of Cholesteric Pitch

A.B. Harris, Randall D. Kamien, and T. C. Lubensky

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 12 July 1996

We present a microscopic analysis of the instability of the nematic phase to chirality when molecular
chirality is introduced perturbatively. We show that for central-force interactions the previously
neglected short-range biaxial correlations play a crucial role in determining the cholesteric pitch. We
propose a pseudoscalar strength which quantifies the chirality of a molecule. [S0031-9007(97)02460-5]

PACS numbers: 61.30.Cz

Chirality in molecules leads to a myriad of macroscopic¢s and ¢ in Fig. 1. To our knowledge, no previous
chiral structures, including life itself [1]. A molecule is attempt to calculate the cholesteric pitch has treated
chiral if its mirror image cannot be rotated to replicatethis properly. If neighboring molecules are spun freely
itself [2]. Equivalently it is chiral if its symmetry group about their long axes, they become effectively nonchiral,
does not contain the elemei®,—a rotation around and interactions favoring twist are washed out [10].
an S, axis by 27/n followed by a mirror through Thus, the pitch of a cholesteric depends critically on
a plane perpendicular to that axis. A chiral moleculethe degree of intermolecular correlation of short-axes
cannot be uniaxial: the only infinite point groups aredirections: a vanishing correlation leads to an infinite
Cw»y and D, [3] which both containS,. Thus if pitch, and complete correlation, as would be produced
the molecular orientations are averaged independentlyy long-range biaxial order, leads to the shortest pitch.
(even if the distribution is uniaxial about a commonin a uniaxial phase, mean-field theory does not treat
molecular axis), the interactions will be identical to thosethese short-axes correlations and cannot predict a finite
of molecules with aC.. axis and will therefore not be cholesteric pitch from molecular shape. Thus it will
chiral. Figure 1 shows a schematic representation of tweither lead to a phase with long-range order in the short-
interacting chiral molecules whose degree of chirality caraxes directions (a biaxial phase) or to a uniaxial phase
be varied continuously as we will discuss below. without chirality [11]. Although the results presented here

Molecular chirality induces chiral interactions that pro- are only methodological, they have crucial implications
duce intermolecular torques of a given sign and can givéor numerical simulations [12] since such calculations
rise to equilibrium chiral structures such as the cholesteriare often based on excluded-volume hard-core or other
phase of liquid crystals. There are two common analyses
of this effect. The first is purely classical [4-8], while
the second invokes a generalized chiral dispersion force X
whose origin is quantum mechanical [6]. One can ar-
gue that there are systems for which the dominant in-
teraction is a classical one, involving two-point, central
forces between atoms or interaction centers on molecules,
and accordingly in this paper we consider only this clas-
sical mechanism. In a more detailed paper [9], we will
consider the quantum interaction and compare its strength
with the classical one studied here. Our primary focus
will bg the calculation of ch(_)Ieste_ric pitch from Fh_ese ih' FIG. 1. Schematic representation of two chiral molecules.
teractions. The usual classical picture of the origin of in-The atoms are represented by both the filled and unfilled circles,
termolecular twist considers two screwlike molecules withwhile the lines serve only as a guide to the eye. Each line on
excluded-volume interactions [4,5]. In order for the vanestach molecule lies in anz plane parallel to the page. The
of the screws to interleave, the molecules must have &Ms and atoms in the plane at= L/2 are black, and those

In the plane ay = —L/2 are grey. The angle between the

nonzero angle between their screw axes. A similar pIC'projection of the two arms onto the same plane determines

ture arises via the tangent-tangent interactions of chirahe degree of chirality. As examples, we consider two versions
molecules [6,7] or via surface-nematic interactions of chi-of this molecule. In the first, all atoms are identical, while in
ral dopants [8]. the second, the atoms with a hollow center carry a negative

The above mechanism produces a preferred nonzer‘é‘arge and those with a filled center carry a positive charge. In
. - . . e nematic phase, the molecules spin freely about the nematic
rotation angle between long axes of neighboring chiral,is normal to the page so thasingdy) — (Cospy) = 0.
molecules (SUC_h as two SCVGWS) only if there is correlationrhere are, however, orientational correlations betwegrand
between the directions of their short axes, e.g., betweeg;.
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central classical interactions of the type we consider. IR | 75,4) is the projected torques, is the torque exerted
what follows, we will focus on molecules with biaxial on moleculeB by moleculeA, R = Rz — Ry, andR |
symmetry and biaxial correlations, though our resultss the projection oR onto the plane perpendicular to
can be generalized to molecules withaxial symmetry. The chiral parameterh must be zero in achi-
Cholesteric phases are, of course, biaxial. We are natl systems that have an equilibrium nematic
discussing the higher order effect due to the biaxial ordephase. To see that our formulation leads to this
induced by the cholesteric pitch axis, but rather, theresult, consider evaluatingd ,Tz4 for a system
reverse mechanism in which biaxial order is needed tain which all molecules are achiral. The thermo-
produce chiral phases. dynamic average is carried out over all configu-
The physics of many chiral liquid crystalline phases carrations Q of the molecules consistent with the assumed
be captured via the phenomenological Frank free energgematic order. If, and only if, the molecules are achiral,

density for the unit vecton, the average may equivalently be carried out over all
| s , configurations 2, where  is obtained from{ by
f=3Kl[V-nF + 3Kn - (VX n)] a reflection through a plane perpendicular io But

N %Kg[n X (VX mP + - (V X n). 1) hRi _rzA:mO'Q is the negative ofR, - 734 In Q, sO
Our expression fok is perfectly general: it applies to
quantum as well as classical systems. Note that hard-core
interactions can be viewed as the limiting case of central
orces between atoms of a single kind that mutually
interact via central forces, and thus we begin our analysis

for such systems. The projected torque is then

where K;, K,, and K5 are the Frank elastic constants
for splay, twist, and bend, respectively, ard is a
chiral parameter. This free energy is invariant under th
inversionn — —n, consistent with the symmetry of the
nematic phase. The calculation bfis the focus of this

paper.
The most common manifestation of the preferred pack- D
ing angle of chiral molecules is the cholesteric liquid crys- Tpa = (D €uRirgd* VIR + 15 —10) ), (3)
Ba

tal phase in which a particular axis of each molecule lies
along the nematic directar = [coskz, sinkz,0]. The?z
axis is the pitch axis, and the pitch B = 27 /k, the
distance over which the nematic director rotates2hby.
In this uniform twisted statsm - V X n = —k, and the
Frank free energy density reduces fo= %szz — hk

where r, = rs, and rg = rpg are, respectively, the
coordinates of atom& and B in moleculesA andB. To
facilitate our analysis, we will now consider an expansion
of Tg4 in powers of relative atomic distance over center-
of-mass separation, i.e., i o/R. We expect, however,

so thath = —df/dkli=o. The equilibrium value ok is  {hat the conclusions we draw from this analysis are more

ko = h/K,. L_Jsmg standard statistical mechanical proce'generally valid and apply, in particular, to hard-core

dures, the chiral parameter can be expressed as interactions. In such an expansion, only terms that are
of odd in the atomic coordinates, and rg are sensitive

1 /oU

Y <ﬁ> ’ (@) 1o reflections and thus to chirality. Furthermore, terms
k=0 that are even ir, andrg are necessarily odd iR and
where the brackets denote a thermodynamic average inll, therefore, not survive the average over the nematic
nematic state in which there is a spatially uniform directordistribution function. Thus, if we assume an achiral
n, Y is the sample volume, andl is the total potential distribution characteristic of a nematic phase, we can
energy. We denote the center-of-mass coordinate Qstrict our attention to terms odd iy andrg. (We will,
moleculeA by R, and the coordinate relative to the centerhowever, reconsider this point later.) Singemeasures
of mass of particlex in moleculeA by ra,. Ingeneral, the position relative to the center of magszrs = 0,
a should run over all interaction centers (usually atomsand thus the linear and third order terms vanish. The first

and nuclei) in moleculed. The potential energy/ is  nonvanishing chiral term is the fifth order term
a function of all the coordinates. To determine we
introduce an infinitesimal twist in a nematic state in which s
the molecules are aligned along a uniform direchor ba
Under such a twist, atomic coordinates within molecule 1 Cmi 0 m P s akalamapas
A will undergo a rotationdri, = €;xdwirk, where 4!<BZaG’JkRirBrBarﬂarﬂarﬂaa 9°079%9 V(R)>’
Swi = kel(e - R,) is a rotation angle about an arbitrary 4)
unit vectore perpendicular tam. The magnitude 06 w4 ] ]
increases linearly with the projection of the center-of-Whererg, =rg — r,. This quantity can be reexpressed
mass positiorR 4 alonge. Using (2) and the invariance in terms of the second and th|r§j rank masjs moment
of the system with respect to arbitrary rotations about théensors on mo_lleculei’ = A, B, Mx = Y ex(rxry —

Jim

. . Tan_ 1 : i oo
n axis, we obtainh = — 7Y 'Y 5, Tpa, Where Ty, = gr)z(a”), and Sy =2, cx r')](r)l(r)’(". M/ is the usual

k=0
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quadrupole tensor describing nematic order, which camvould be zero, and both terms in (5) would vanish. How-

be decomposed into a uniaxial and a biaxial part.

Ifever, when there are biaxial correlations, this term will

we assume that there is perfect alignment of the longestot vanish. To see this explicitly, we can use the iden-

principal axis along the nematic direction, thaf!
M(nin! — %Bﬂ) + B/!, where B/! is the symmetric
traceless biaxial tensor with no components alangThe

third rank tensorS“* is symmetric. In general, there
are correlations between the direction of the vedor

connecting two molecules and the respective orientations
of these molecules. The important effects we consider a
present even if these correlations are absent, and we wj

ignore them. This permits us to evaluate the orientation
average of products ok’ with respect to a distribution
that is isotropic in the plane perpendicular w0 For
example(R'R/) = Rin‘ni + 3R (8" — nini). Setting
V(R) = g(R?/2), expanding the derivatives df, and
performing the above average, we obtain

| il kpl
5 €ijxQ"P{(Bp Sa

whereQ'? = n'n? — 36'7 and

jl kpl

Toa = + BAS5")K(R)), (5)

1
KR) = R2{g® + Rjjg® + 3R [¢" + Rjg“'T. (6)

whereg™(x) = d"g(x)/dx". We see then, that only the
traceless part of*?! contributes to7>, and so we may
take it to be traceless.

As we have already discussef, is nonzero only if

tity S5 = —ae,sBY 0% /2B2+ (5 symmetric permu-
tations), whereB?> = Tr(B?). Inserting this into (5), we
come to (assuming identical molecules)

Tin = 25 (KRIBYBY) = w(KRIT,(R), (1)

on function for two molecules separated by a distaRce

riyhererb(R) x (co$2(pp — ¢4)]) is the biaxial correla-

e would expect in a uniaxial phase tHaf(R) « e ®/¢

where ¢ is the biaxial correlation length. Naively, one
would expecté¢ to be of the order of the molecular spac-
ing. Thus we conclude that at the very least chirality re-
quires biaxial correlations among the nematogens. We
tabulateys for a number of chiral molecules in Table I.
Equation (7) gives the dominant contribution T,
to linear order iny in the nematic phase. There is
an additional contribution linear iy arising from the
chiral part of the equilibrium probability distribution
(e”U/ksT /Z where Z is the partition function) and those
terms with even powers of arising in rgakv that are
averaged in (3). In the isotropic phase, our analysis can
be extended to show that this term cancels the contribution
to Tgsa from (4) and (5) to producé = 0 as required.
In the ordered phase, this other termhigher orderin

the molecules are chiral. How is this fact manifested incorrelation functions and is subdominant to our result [9].

(5)? Since bothp? and B/ can be nonzero for achiral
molecules, it would seem that the tenséf! is a measure
of chirality. This is not true, however, becaus®' also

We have shown that the projected torqug and hence
K> ko will be proportional to the molecular chiral strength
. We note that there are a number of chiral liquid crys-

has components that can be nonzero for achiral moleculefls, such as solutions of the viruses FD and TMV as well

Though there are many possible definitions ahalecu-

as of DNA, that show very small, if any, macroscopic

lar chiral strength, when a molecule has a unique longhirality [13,14]. We believe the ideas presented here ex-

axis we propose the pseudoscalar= S¥"€;; Q"' B/™ as

plain these observations, although a complete understand-

a measure of the chiral strength of a molecule. This defilng will require a thorough investigation of the quantum

nition is useful because, as we shall skeés proportional
to ¢. If the molecule is not biaxial (i.eB*" = 0), ¢ will
vanish. In addition, sinc@ is a rotational invarianbdd
in r, it will also vanish if the molecule is achiral. Itis pos-
sible that even for a chiral moleculé, vanishes. If this

dispersion force. Helical molecules have very small bi-
axiality and hence small values gf (see Table I). The
chiral contribution tay comes fromS*?! and is inversely
proportional to the number of turns per unit length, which
is consistent with one’s geometric intuition. In addition,

were the case, however, there would still be nonvanishsince the molecular chiral strength depends on the degree
ing contributions to (3) at higher order in the expansion inof molecular biaxiality, we see that fdixed turn den-

powers ofr/R. Indeed, a complete description of chiral
interactions requires the knowledge af the chiral mo-

ments of the molecules. In the basis of the principal axe

of the molecule withn along z, & = S™*(B* — BY).
Only the components o§*?! with three different indices
in this basis contribute t¢y9. We can, therefore, replace
Skl in (5) with the tensos' ' whose only nonvanishing
component in the principal axis basisSig=.

The projected torqud3, is an average over fluctua-
tions in the aligned nematic phase.

we were to spin the molecules independently, thefi)

1478

sity (or equivalently, fixeds*?!) ¢ falls off as the total

%’ABLE I. Value of ¢ for molecules made of atoms located at
the coordinates given in the first column. The first molecule is

shown in Fig. 1, and the second is a helix of uniform density.

Atomic coordinates

4

L>2w: {(xw,0,—L/2),

_ 2w*L sin(2
(xw cosy, xwsiny, L/2)} " 27)

[1-

It will be zero unless
biaxial directions on pairs of molecules are correlated. If

L>rneZ: {se[-1/2,1/2]
(r coqQ27ns), r sin2mns), Ls)},

3r4L

24
- (2mwn)3 (7n)? :|
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length squared. In addition, these molecules can easily dicular ton. Adding chargesg and —g¢ to the molecules
rotate independently and are far apart (tens of angstromsyhown in Fig. 1 (and using the atomic positions specified
Hence we believe the biaxial correlation lengtiwill be  in Table 1), we havey, = 4¢°>w?L siny. We believe that
small compared to the intermolecular spacing. Our clasehiral interactions of this type play a role in those liquid
sical analysis should be valid especially for FD and TMV crystals which can form ferroelectric phases (i.e., -
since these molecules are thought to interact stericallyTGB¢, etc.).

Alternatively, short-molecule, thermotropic liquid crystals We close with some observations concerning the
show very strong chirality, with pitches on the order ofrelation of our work to previous treatments of chiral
5000 A. These molecules are generally quite flat andnteractions. An intermolecular potential of the form
thus quite biaxial. Typical molecular densities would notygh — Mg’éikleMng(R) + (A —< B) remains chiral
allow the molecules to rotate independently of each otheand nonzero upon spinning about the local nematic
and thus we expect the biaxial correlations at the molecudirector. It leads automatically to a free energy of
lar separation to be reasonably large. The combined effeghe form of (1) with 4 proportional toV,. Thus, this

of a large biaxial component # and of a largef should  potential or ones similar to it are often used as a starting
lead to relatively short pitches. In both cases we note thgjoint for the description of chiral liquid crystals. Our
naively one would expect on dimensional grounds thatnalysis shows that this potentiaannot be obtained

ko would be on the order ofr/a wherea is the inter-  from classical central forces between atoms on molecules,
molecular spacing, which is certainly not a typical inversethough it can arise through quantum dispersion forces
pitch. Pitches are typically on the scale mfcrons,not  [6]. The potential corresponding to (5) has the form
angstroms. Our expression (7) for the leading term of Vi = ZBA[SXkMémaiajakalamV + (Ao B)] Sitis

T4 is consistent with all of the above observations. We, symmetric tensor—it cannot be expressed in terms of

also note that in all but the most dilute solutions we doeijk andM* to producer;R.

not expect any universal dependence of pitch on concen-'; is 4 pleasure to acknowledge stimulating communi-
tration or temperature: the details of the interactions and,+ions with D. Andelman, S. Fraden, R. Meyer, M. Os-
correlations should be different from system to system. ipov, R. Pelcovits, R. Petschek, and J. Selinger. A.B. H.

We briefly mention a number of generalizations to be ¢ supported by NSF Grant No. 95-20175. R.D.K.

discussed later [9]. We have considered here only thg g T c. L were supported by NSF Grant No. DMR94-
interactions between a pair of perfectly aligned, identicabg114

molecules. In the nematic state, the molecules are not

perfectly aligned and the Maier-Saupe order parameter

S is less thanl. We can incorporate these fluctuations

into the calculation of'z4. Indeed, we find, as discussed

above, that when there is no nematic order there is no[l] L. Pasteur, Ann. Chim. Phys., SeriesZ3, 442 (1848).

net torque. Since (15) involves the product i’ On. [2] W. Thomson,The Robert Boyle Lecture, Oxford Univer-
one molecule ands’" on the other, our results easily sity Junior Scientific Club, May 16, 189&printed inBal-
generalize to chiral molecules interacting with achiral, timore LecturegC.J. Clay & Sons, London, 1904).
biaxial molecules. More generally, we find that including [3] L.D. Landau and E.M. Lifshitz,Quantum Mechanics
correlations between the intermolecular direction and the  (Pergamon Press, Oxford, 1977), 3rd ed.

molecular orientation leads to chiral interactions between[4] J.P. Straley, Phys. Rev. A4, 1835 (1976).

chiral molecules and uniaxial molecules. [5] G.T. Evans, Mol. Phys77, 969 (1992).
Additionally, we note that atomic identity may be [6] B.W. Van der Meeret al., J. Chem. Phys65, 3935
relaxed. In this case, there is an interactitp be- (1976), and references therein.

tween pairs of atoms leading to a potential energy [7] R-A. Pelcovits, Lig. Cryst21, 361 (1996).

U= 1S gy Ry ta, et g, and gy 9 AT O et and . o, Pr Rev
are the “charges” of atom& and 8. A chiral mole- (9] A B. Harris, R.D. Kamien, and T.C. Lubensky (unpub-
cule such as that shown in Fig. 1 can carry a dipole " " |ished).

momentp, = >, g.T4, PErpendicular to its long axis. [10] L. Salemet al.,J. Am. Chem. Socl09, 2887 (1987).

We then find a third order contribution to the projected[11] H. Schrdder, ifThe Molecular Physics of Liquid Crystals,

torque of the forrns,'jkaCémRia"ala’”Vc, whereCy' = edited by G.R. Luckhurst and G.W. Gray (Academic

25 qﬁ(rérg’ - %rf;b‘f’”) is the charge quadrupole mo- Press, New York, 1979), Chap. 5.

h I | hiral h | 12] A. Stroobantst al., Phys. Rev. Lett57, 1452 (1986).
ment tensor. The molecular chiral strength analogous t 3] S. Fraden, inObservation, Prediction, and Simulation of

¢ for this system isj, = €xp' C/" QM. With this def- Phase Transitions in Complex Fluidsdited by M. Baus,
inition, Tp, is proportional toy.I',(R) whereI',(R) is L.F. Rull, and J. P. Ryckaert (Kluwer, Dordrecht, 1995).
the dipole-moment pair correlation function, which, like [14] R. Podgorniket al., Proc. Natl. Acad. Sci. U.S.A03, 4261
I',(R), measures angular correlations in the plane perpen-  (1996).
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