870 research outputs found
Poissonian bursts in e-mail correspondence
Recent work has shown that the distribution of inter-event times for e-mail
communication exhibits a heavy tail which is statistically consistent with a
cascading Poisson process. In this work we extend the analysis to higher-order
statistics, using the Fano and Allan factors to quantify the extent to which
the empirical data depart from the known correlations of Poissonian statistics.
The analysis shows that the higher-order statistics from the empirical data is
indistinguishable from that of randomly reordered time series, thus
demonstrating that e-mail correspondence is no more bursty or correlated than a
Poisson process. Furthermore synthetic data sets generated by a cascading
Poisson process replicate the burstiness and correlations observed in the
empirical data. Finally, a simple rescaling analysis using the best-estimate
rate of activity, confirms that the empirically observed correlations arise
from a non-homogeneus Poisson process
Micro-bias and macro-performance
We use agent-based modeling to investigate the effect of conservatism and
partisanship on the efficiency with which large populations solve the density
classification task--a paradigmatic problem for information aggregation and
consensus building. We find that conservative agents enhance the populations'
ability to efficiently solve the density classification task despite large
levels of noise in the system. In contrast, we find that the presence of even a
small fraction of partisans holding the minority position will result in
deadlock or a consensus on an incorrect answer. Our results provide a possible
explanation for the emergence of conservatism and suggest that even low levels
of partisanship can lead to significant social costs.Comment: 11 pages, 5 figure
On Universality in Human Correspondence Activity
Identifying and modeling patterns of human activity has important
ramifications in applications ranging from predicting disease spread to
optimizing resource allocation. Because of its relevance and availability,
written correspondence provides a powerful proxy for studying human activity.
One school of thought is that human correspondence is driven by responses to
received correspondence, a view that requires distinct response mechanism to
explain e-mail and letter correspondence observations. Here, we demonstrate
that, like e-mail correspondence, the letter correspondence patterns of 16
writers, performers, politicians, and scientists are well-described by the
circadian cycle, task repetition and changing communication needs. We confirm
the universality of these mechanisms by properly rescaling letter and e-mail
correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl
Statistical mixing and aggregation in Feller diffusion
We consider Feller mean-reverting square-root diffusion, which has been
applied to model a wide variety of processes with linearly state-dependent
diffusion, such as stochastic volatility and interest rates in finance, and
neuronal and populations dynamics in natural sciences. We focus on the
statistical mixing (or superstatistical) process in which the parameter related
to the mean value can fluctuate - a plausible mechanism for the emergence of
heavy-tailed distributions. We obtain analytical results for the associated
probability density function (both stationary and time dependent), its
correlation structure and aggregation properties. Our results are applied to
explain the statistics of stock traded volume at different aggregation scales.Comment: 16 pages, 3 figures. To be published in Journal of Statistical
Mechanics: Theory and Experimen
Timing interactions in social simulations: The voter model
The recent availability of huge high resolution datasets on human activities
has revealed the heavy-tailed nature of the interevent time distributions. In
social simulations of interacting agents the standard approach has been to use
Poisson processes to update the state of the agents, which gives rise to very
homogeneous activity patterns with a well defined characteristic interevent
time. As a paradigmatic opinion model we investigate the voter model and review
the standard update rules and propose two new update rules which are able to
account for heterogeneous activity patterns. For the new update rules each node
gets updated with a probability that depends on the time since the last event
of the node, where an event can be an update attempt (exogenous update) or a
change of state (endogenous update). We find that both update rules can give
rise to power law interevent time distributions, although the endogenous one
more robustly. Apart from that for the exogenous update rule and the standard
update rules the voter model does not reach consensus in the infinite size
limit, while for the endogenous update there exist a coarsening process that
drives the system toward consensus configurations.Comment: Book Chapter, 23 pages, 9 figures, 5 table
The aggregation of cytochrome C may be linked to its flexibility during refolding
Large-scale expression of biopharmaceutical proteins in cellular hosts results in production of large insoluble mass aggregates. In order to generate functional product, these aggregates require further processing through refolding with denaturant, a process in itself that can result in aggregation. Using a model folding protein, cytochrome C, we show how an increase in final denaturant concentration decreases the propensity of the protein to aggregate during refolding. Using polarised fluorescence anisotropy, we show how reduced levels of aggregation can be achieved by increasing the period of time the protein remains flexible during refolding, mediated through dilution ratios. This highlights the relationship between the flexibility of a protein and its propensity to aggregate. We attribute this behaviour to the preferential urea-residue interaction, over self-association between molecules
Early risk factors for adolescent antisocial behaviour: an Australian longitudinal study
Objective: This investigation utilizes data from an Australian longitudinal study to identify early risk factors for adolescent antisocial behaviour. Method: Analyses are based on data from the Mater University Study of Pregnancy, an on-going longitudinal investigation of women’s and children’s health and development involving over 8000 participants. Five types of risk factors (child characteristics, perinatal factors, maternal/familial characteristics, maternal pre- and post-natal substance use and parenting practices) were included in analyses and were based on maternal reports, child assessments and medical records. Adolescent antisocial behaviour was measured when children were 14 years old, using the delinquency subscale of the Child Behaviour Checklist. Results: Based on a series of logistic regression models, significant risk factors for adolescent antisocial behaviour included children’s prior problem behaviour (i.e. aggression and attention/restlessness problems at age 5 years) and marital instability, which doubled or tripled the odds of antisocial behaviour. Perinatal factors, maternal substance use, and parenting practices were relatively poor predictors of antisocial behaviour. Conclusions: Few studies have assessed early predictors of antisocial behaviour in Australia and the current results can be used to inform prevention programs that target risk factors likely to lead to problem outcomes for Australian youth
Circadian pattern and burstiness in mobile phone communication
The temporal communication patterns of human individuals are known to be
inhomogeneous or bursty, which is reflected as the heavy tail behavior in the
inter-event time distribution. As the cause of such bursty behavior two main
mechanisms have been suggested: a) Inhomogeneities due to the circadian and
weekly activity patterns and b) inhomogeneities rooted in human task execution
behavior. Here we investigate the roles of these mechanisms by developing and
then applying systematic de-seasoning methods to remove the circadian and
weekly patterns from the time-series of mobile phone communication events of
individuals. We find that the heavy tails in the inter-event time distributions
remain robustly with respect to this procedure, which clearly indicates that
the human task execution based mechanism is a possible cause for the remaining
burstiness in temporal mobile phone communication patterns.Comment: 17 pages, 12 figure
The role of mentorship in protege performance
The role of mentorship on protege performance is a matter of importance to
academic, business, and governmental organizations. While the benefits of
mentorship for proteges, mentors and their organizations are apparent, the
extent to which proteges mimic their mentors' career choices and acquire their
mentorship skills is unclear. Here, we investigate one aspect of mentor
emulation by studying mentorship fecundity---the number of proteges a mentor
trains---with data from the Mathematics Genealogy Project, which tracks the
mentorship record of thousands of mathematicians over several centuries. We
demonstrate that fecundity among academic mathematicians is correlated with
other measures of academic success. We also find that the average fecundity of
mentors remains stable over 60 years of recorded mentorship. We further uncover
three significant correlations in mentorship fecundity. First, mentors with
small mentorship fecundity train proteges that go on to have a 37% larger than
expected mentorship fecundity. Second, in the first third of their career,
mentors with large fecundity train proteges that go on to have a 29% larger
than expected fecundity. Finally, in the last third of their career, mentors
with large fecundity train proteges that go on to have a 31% smaller than
expected fecundity.Comment: 23 pages double-spaced, 4 figure
Temporal networks of face-to-face human interactions
The ever increasing adoption of mobile technologies and ubiquitous services
allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity at
the finest resolution of face-to-face proximity. As a consequence, empirical
data describing social and behavioral networks are acquiring a longitudinal
dimension that brings forth new challenges for analysis and modeling. Here we
review recent work on the representation and analysis of temporal networks of
face-to-face human proximity, based on large-scale datasets collected in the
context of the SocioPatterns collaboration. We show that the raw behavioral
data can be studied at various levels of coarse-graining, which turn out to be
complementary to one another, with each level exposing different features of
the underlying system. We briefly review a generative model of temporal contact
networks that reproduces some statistical observables. Then, we shift our focus
from surface statistical features to dynamical processes on empirical temporal
networks. We discuss how simple dynamical processes can be used as probes to
expose important features of the interaction patterns, such as burstiness and
causal constraints. We show that simulating dynamical processes on empirical
temporal networks can unveil differences between datasets that would otherwise
look statistically similar. Moreover, we argue that, due to the temporal
heterogeneity of human dynamics, in order to investigate the temporal
properties of spreading processes it may be necessary to abandon the notion of
wall-clock time in favour of an intrinsic notion of time for each individual
node, defined in terms of its activity level. We conclude highlighting several
open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series:
Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
- …
