316 research outputs found

    The Network Structure of Childhood Psychopathology in International Adoptees

    Get PDF
    International adoptees are at an increased risk of emotional and behavioral problems, especially those who are adopted at an older age. We took a new approach in our study of the network structure and predictability of emotional and behavioral problems in internationally adopted children in Finland. Our sample was from the on-going adoption study and comprised 778 internationally adopted children (387 boys and 391 girls, mean age 10.5 (SD 3.4) years). Networks were estimated using Gaussian graphical models and lasso regularization for all the children, and separately for those who were adopted at different ages. The results showed that anxiety/depressive symptoms, social problems, and aggressiveness were the most central symptom domains. Somatic symptoms were the least central and had the weakest effect on the other domains. Similarly, aggressiveness, social problems, and attention problems were high in terms of predictability (73-65%), whereas internalizing problems were relatively low (28-56%). There were clear but local age-group differences in network structure, symptom centrality, and predictability. According to our findings, network models provide important additional information about the centrality and predictability of specific symptom domains, and thus may facilitate targeted interventions among international adoptees.Peer reviewe

    In search of disorders: internalizing symptom networks in a large clinical sample.

    Get PDF
    Background The co‐occurrence of internalizing disorders is a common form of psychiatric comorbidity, raising questions about the boundaries between these diagnostic categories. We employ network psychometrics in order to: (a) determine whether internalizing symptoms cluster in a manner reflecting DSM diagnostic criteria, (b) gauge how distinct these diagnostic clusters are and (c) examine whether this network structure changes from childhood to early and then late adolescence. Method Symptom‐level data were obtained for service users in publicly funded mental health services in England between 2011 and 2015 (N = 37,162). A symptom network (i.e. Gaussian graphical model) was estimated, and a community detection algorithm was used to explore the clustering of symptoms. Results The estimated network was densely connected and characterized by a multitude of weak associations between symptoms. Six communities of symptoms were identified; however, they were weakly demarcated. Two of these communities corresponded to social phobia and panic disorder, and four did not clearly correspond with DSM diagnostic categories. The network structure was largely consistent by sex and across three age groups (8–11, 12–14 and 15–18 years). Symptom connectivity in the two older age groups was significantly greater compared to the youngest group and there were differences in centrality across the age groups, highlighting the age‐specific relevance of certain symptoms. Conclusions These findings clearly demonstrate the interconnected nature of internalizing symptoms, challenging the view that such pathology takes the form of distinct disorders

    Carbon Nanotube Solar Cells

    Get PDF
    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement

    Variability in phase and amplitude of diurnal rhythms is related to variation of mood in bipolar and borderline personality disorder

    Get PDF
    Abstract Variable mood is an important feature of psychiatric disorders. However, its measurement and relationship to objective measureas of physiology and behaviour have rarely been studied. Smart-phones facilitate continuous personalized prospective monitoring of subjective experience and behavioural and physiological signals can be measured through wearable devices. Such passive data streams allow novel estimates of diurnal variability. Phase and amplitude of diurnal rhythms were quantified using new techniques that fitted sinusoids to heart rate (HR) and acceleration signals. We investigated mood and diurnal variation for four days in 20 outpatients with bipolar disorder (BD), 14 with borderline personality disorder (BPD) and 20 healthy controls (HC) using a smart-phone app, portable electrocardiogram (ECG), and actigraphy. Variability in negative affect, positive affect, and irritability was elevated in patient groups compared with HC. The study demonstrated convincing associations between variability in subjective mood and objective variability in diurnal physiology. For BPD there was a pattern of positive correlations between mood variability and variation in activity, sleep and HR. The findings suggest BPD is linked more than currently believed with a disorder of diurnal rhythm; in both BPD and BD reducing the variability of sleep phase may be a way to reduce variability of subjective mood

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences

    An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

    Get PDF
    Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)

    The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years

    Get PDF
    In this study, we investigate the formation and evolution mechanisms of the brightest cluster galaxies (BCGs) over cosmic time. At high redshift (z ∼ 0.9), we selected BCGs and most massive cluster galaxies (MMCGs) from the Cl1604 supercluster and compared them to low-redshift (z ∼ 0.1) counterparts drawn from the MCXC meta-catalogue, supplemented by Sloan Digital Sky Survey imaging and spectroscopy. We observed striking differences in the morphological, colour, spectral, and stellar mass properties of the BCGs/MMCGs in the two samples. High-redshift BCGs/MMCGs were, in many cases, star-forming, late-type galaxies, with blue broad-band colours, properties largely absent amongst the low-redshift BCGs/MMCGs. The stellar mass of BCGs was found to increase by an average factor of 2.51 ± 0.71 from z ∼ 0.9 to z ∼ 0.1. Through this and other comparisons, we conclude that a combination of major merging (mainly wet or mixed) and in situ star formation are the main mechanisms which build stellar mass in BCGs/MMCGs. The stellar mass growth of the BCGs/MMCGs also appears to grow in lockstep with both the stellar baryonic and total mass of the cluster. Additionally, BCGs/MMCGs were found to grow in size, on average, a factor of ∼3, while their average Sérsic index increased by ∼0.45 from z ∼ 0.9 to z ∼ 0.1, also supporting a scenario involving major merging, though some adiabatic expansion is required. These observational results are compared to both models and simulations to further explore the implications on processes which shape and evolve BCGs/MMCGs over the past ∼7 Gyr
    corecore