74,385 research outputs found
Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming
An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences
Saturn S-IB stage Final static test report, stage S-IB-4
Acceptance static test firing data for Saturn flight stage S-IB-
Results on the nucleon spin structure
SMC performed an investigation of the spin structure of the nucleon by
measuring deep inelastic scattering of polarised muons off polarised protons
and deuterons. A summary of the results for spin structure functions and sum
rules is given.Comment: 8 pages, LaTeX, Talk given at the Workshop on "Symmetry and Spin -
PRAHA98", Prag, September 1998. Proceedings to be published by Czech. Journ.
Phy
Parameters for Twisted Representations
The study of Hermitian forms on a real reductive group gives rise, in the
unequal rank case, to a new class of Kazhdan-Lusztig-Vogan polynomials. These
are associated with an outer automorphism of , and are related to
representations of the extended group . These polynomials were
defined geometrically by Lusztig and Vogan in "Quasisplit Hecke Algebras and
Symmetric Spaces", Duke Math. J. 163 (2014), 983--1034. In order to use their
results to compute the polynomials, one needs to describe explicitly the
extension of representations to the extended group. This paper analyzes these
extensions, and thereby gives a complete algorithm for computing the
polynomials. This algorithm is being implemented in the Atlas of Lie Groups and
Representations software
Miniature spectrally selective dosimeter
A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame
Nature Versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center
Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet
Cluster at the Galactic Center: the Pistol star, G0.120-0.048, and qF362. We
present imaging at 19, 25, 31, and 37 {\mu}m of the region containing these
three LBVs, obtained with SOFIA using FORCAST. We argue that the Pistol and
G0.120-0.048 are identical ``twins" that exhibit contrasting nebulae due to the
external influence of their different environments. Our images reveal the
asymmetric, compressed shell of hot dust surrounding the Pistol Star and
provide the first detection of the thermal emission from the symmetric, hot
dust envelope surrounding G0.120-0.048. Dust and gas composing the Pistol
nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars.
The northern region of the Pistol nebula is decelerated due to the interaction
with the high-velocity (2000 km/s) winds from adjacent Wolf-Rayet Carbon (WC)
stars. With the DustEM code we determine that the Pistol nebula is composed of
a distribution of very small, transiently-heated grains (10-~35 {\AA}) and that
it exhibits a gradient of decreasing grain size from the south to the north due
to differential sputtering by the winds from the WC stars. Dust in the
G0.120-0.048 nebula is primarily heated by the central star; however, the
nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol
nebula, the G0.120-0.048 nebula is freely expanding into the surrounding
medium. Given independent dust and gas mass estimates we find that the Pistol
and G0.120-0.048 nebulae exhibit similar gas-to-dust mass ratios of ~310 and
~290, respectively. Both nebulae share identical size scales (~ 0.7 pc) which
suggests that they have similar dynamical timescales of ~10^5 yrs, assuming a
shell expansion velocity of v_exp 60 km/s.Comment: 18 pages, 7 figures, accepted to Ap
A simplified test of universality in Lattice QCD
A simplified test of universality in Lattice QCD is performed by analytically
evaluating the continuous Euclidean time limits of various lattice fermion
determinants, both with and without a Wilson term to lift the fermion doubling
on the Euclidean time axis, and comparing them with each other and with the
zeta-regularised fermion determinant in the continuous time--lattice space
setting. The determinant relations expected from universality considerations
are found to be violated by a certain gauge field-dependent factor, i.e. we
uncover a "universality anomaly". The physical significance, or lack thereof,
of this factor is a delicate question which remains to be settled.Comment: 6 pages. v2: Revised to include a further result on the
zeta-regularised fermion determinant in the continuous time--lattice space
setting which impacts on the conclusions; typos corrected; acknowledgement
and reference added; to appear in Phys.Rev.Let
A Review and Outlook for the Removal of Radon-Generated Po-210 Surface Contamination
The next generation low-background detectors operating deep underground aim
for unprecedented low levels of radioactive backgrounds. The deposition and
presence of radon progeny on detector surfaces is an added source of energetic
background events. In addition to limiting the detector material's radon
exposure in order to reduce potential surface backgrounds, it is just as
important to clean surfaces to remove inevitable contamination. Such studies of
radon progeny removal have generally found that a form of etching is effective
at removing some of the progeny (Bi and Pb), however more aggressive
techniques, including electropolishing, have been shown to effectively remove
the Po atoms. In the absence of an aggressive etch, a significant fraction of
the Po atoms are believed to either remain behind within the surface or
redeposit from the etching solution back onto the surface. We explore the
chemical nature of the aqueous Po ions and the effect of the oxidation state of
Po to maximize the Po ions remaining in the etching solution of contaminated Cu
surfaces. We present a review of the previous studies of surface radon progeny
removal and our findings on the role of oxidizing agents and a cell potential
in the preparation of a clean etching technique.Comment: Proceedings of the Low Radioactivity Techniques (LRT) 2017, Seoul,
South Korea, May 24-26, 201
The effects of day and night temperature on Chrysanthemum morifolium: investigating the safe limits for temperature integration
The impact of day and night temperatures on pot chrysanthemum (cultivars ‘Covington’ and ‘Irvine’) was assessed by exposing cuttings, stuck in weeks 39, 44, and 49, to different temperature regimes in short-days. Glasshouse heating setpoints of 12°, 15°, 18°, and 21°C, were used during the day, with venting at 2°C above these set-points. Night temperatures were then automatically manipulated to ensure that all of the treatments achieved similar mean diurnal temperatures. Plants were grown according to commercial practice and the experiment was repeated over 2 years. Increasing the day temperature from approx. 19°C to 21°C, and compensating by reducing the night temperature, did not have a significant impact on flowering time, although plant height was increased.This suggests that a temperature integration strategy which involves higher vent temperatures, and exploiting solar gain to give higher than normal day temperatures, should have minimal impact on crop scheduling. However, lowering the day-time temperature to approx. 16°C, and compensating with a warmer night, delayed flowering by up to 2 weeks. Therefore, a strategy whereby, in Winter, more heat is added at night under a thermally-efficient blackout screen may result in flowering delays.Transfers between the temperature regimes showed that the flowering delays were proportional to the amount of time spent in a low day-time temperature regime. Plants flowered at the same time, irrespective of whether they were transferred on a 1-, 2-, or 4-week cycle
- …
