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SUMMARY 

The impact of day and night temperatures on pot chrysanthemums (cultivars Covington and 

Irvine) was assessed by exposing cuttings stuck in weeks 39, 44 and 49 to different 

temperature regimes in short days. Glasshouse heating set-points of 12, 15, 18 and 21°C were 

used during the day, with venting at 2°C above these set-points. Night temperatures were then 

automatically manipulated to ensure that all of the treatments achieved similar mean diurnal 

temperatures. Plants were grown according to commercial practice and the experiment was 

repeated over two years. Increasing the day temperature from around 19 to 21°C and 

compensating by reducing the night temperature did not have a significant impact on 

flowering time, although plant height was increased. This suggests that a temperature 

integration strategy which involves higher vent temperatures and exploiting solar gain to give 

higher than normal day temperatures should have minimal impact on crop scheduling. 

However, lowering the day temperature to around 16°C and compensating with a warmer 

night delayed flowering by up to two weeks. Therefore, a strategy whereby, in winter, more 

heat is added at night under a thermally efficient blackout screen may result in flowering 

delays. Transfers between the temperature regimes showed that the delays were proportional 

to the amount of time spent in a low-day regime; plants flowered at the same time irrespective 

of whether they were transferred on a 1, 2 or 4 week cycle.  
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lowering time is generally regarded to be a function of mean diurnal temperature, with 

no special effects of day (D) or night (N) temperature. While Cathey (1954) concluded 

that night temperature had a greater effect on flowering time than day temperature in 

chrysanthemum, Cockshull et al. (1981) pointed out that Cathey had not taken into account 

the fact that the night (15 h) was longer than the day (9 h) when calculating average 

temperatures. Cockshull et al. (1981) reanalysed Cathey’s data and concluded that flowering 

was in fact correlated with the average temperature and that night temperature had no special 

influence.  This conclusion was supported (for most cultivars) by their own experiments in 

which chrysanthemums were grown at temperatures between 10 and 20°C with some 

treatments having different day and night temperature combinations giving the same average 

temperature.  

 The optimum temperature for flowering in chrysanthemum is in the range 18 to 21°C 

(de Jong, 1978, 1989; de Lint and Heij, 1987; Karlsson et al., 1989; Hidén and Larsen, 1994; 

Adams et al., 1998) and so the simple response to average temperature can be expected to 

break down when a combination of sub- and supra-optimal temperatures are used (Karlsson et 

al., 1989). The data of Cathey (1954) and Karlsson et al. (1989) were reanalysed, together 

with other published data (de Jong, 1978; de Lint and Heij, 1987), by Pearson et al. (1993). 

They concluded that the rate of progress to flowering (1/days to flower) in chrysanthemum 

increases linearly with temperature up to an optimum and then decreases linearly with 

increasing supra-optimal temperatures. They also included a linear response to photosynthetic 

photon flux density (PPFD) as higher light integrals have been shown to hasten both flower 

initiation and development (Carvalho and Heuvelink, 2001; van der Ploeg and Heuvelink, 

2006). The simple model presented by Pearson et al. (1993) was able to adequately describe 

all of the data sets, providing further evidence that there are no special effects of day or night 
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temperature. Hidén and Larson (1994) were unable to detect a true linear response between 

mean temperature and the rate of progress to flowering, and instead used a double exponential 

equation to model the relationship between temperature and flowering time, again without 

any special effects of day or night temperature.  

 The approach taken by Pearson et al. (1993) intrinsically assumes that plants respond 

to the instantaneous temperature. Langton and Horridge (2006) showed that growing at 

24D/14N (D and N = 12 h) delayed flowering of chrysanthemum by on average 4 days when 

compared with 19°C continuously; however, the delay was 3 days less than might have been 

expected based on the mean of the continuous 14 and 24°C treatments. Cycling between 14 

and 24°C over 2 or 14 day cycles gave greater delays than the 24D/14N treatment, although 

flowering was still slightly faster than might have been expected based on the continuous 14 

and 24°C treatments. This suggests that plants do not respond simply to instantaneous 

temperature or to the long-term average, rather to something in between. 

With recent increases in energy costs and the need to reduce carbon footprints, 

growers are under increasing pressure to save energy. One of the approaches that is being 

adopted is the use of temperature integration where glasshouse temperatures are allowed to 

fluctuate while achieving similar average temperature. Often this involves raising vent 

temperatures so that, when there is sufficient solar gain, day temperatures are higher and the 

associated temperature credits can be used at night or on dull days, thus reducing the heat 

input. Further savings can be made by reducing the day heating set-points and allowing day 

temperatures to drop when there is little solar gain.  To compensate for these cooler days, 

more heat is then used at night when blackout screens are in place as this reduces heat losses. 

Semi-commercial and commercial trials of temperature integration using high vent 

temperatures have shown little or no flowering delay (Langton et al., 2003). However, the 
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strategy of using low day temperatures and compensating with higher night temperatures 

under a blackout or energy screen has not been fully investigated with regards to the impact 

on crop scheduling or plant quality. This work aims to determine the safe limits of this 

approach for chrysanthemum. 

 

MATERIALS AND METHODS 

 Unrooted cuttings of chrysanthemum (Chrysanthemum morifolium) cvs. Covington and 

Irvine obtained from a commercial propagator (Yoder Toddington, Littlehampton, UK) were 

stuck in weeks 39, 44 and 49 in both 2005 and 2006. Five cuttings, treated with Bumper 

(prochloraz and propiconazole at a rate of 0.4 ml l-1) to minimise the risk of white rust, were 

stuck into each 14 cm pot containing an 80% sphagnum peat and 20% bark growing medium. 

The cuttings were rooted in a glasshouse compartment set to provide a minimum temperature 

of 18°C (vent 24°C) with bench heating providing a compost temperature of around 21°C. 

Shade screens were used when the external light level exceeded 350 W m-2 (total solar). The 

cuttings were initially given long days (lit from 22:00 to 03:15) using cyclical (15 min on; 15 

min off) tungsten night-break lighting (0.5 W m-2 PAR) and were covered with polythene 

sheeting. The polythene was removed after 9 d and, subsequently, high-pressure sodium 

lamps were used continuously to provide approximately 13 W m-2 (PAR) at plant height. The 

aerial CO2 concentration was enriched to 1000 µmol mol-1 which ramped down to 350 µmol 

mol-1 between 5 and 10% vent. Plants were sprayed for height control with B-nine 

(Daminozide) at a rate of 1.0 g l-1 after the removal of the polythene.  

 At the end of propagation (18 days) plants were moved to four 50 m2 glasshouse 

compartments where short days were given (12 h d-1). These compartments were set to 

provide day heating set-points of 12 (12D), 15 (15D), 18 (18D; standard) and 21°C (21D) 
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with venting at 2°C above these set-points. The night temperature set-point in the 18D 

compartment was 18°C, while the set-points in the other compartments were automatically 

adjusted so that all the compartments had a similar mean 24 h temperature. The achieved CO2 

concentration in the 12D compartment (set to 1000 µmol mol-1) was entered as a set-point in 

the other three compartments which had less ventilation, so as to achieve a similar CO2 

concentration in all four compartments. Temperatures and CO2 concentrations were 

independently monitored and logged, and data were compared with those recorded using the 

greenhouse climate control computer. High-pressure sodium lamps were used from 06:00 to 

18:00 h (approximately 13 W m-2 PAR at plant height) and blackouts were used from 18:00 to 

06:00 h with some gapping at night for humidity and temperature control. Humidity control 

also involved the introduction of minimum pipe and minimum vent temperatures.   

 The initial density following propagation was 25 pots m-2 which was reduced after two 

weeks to a final spacing of 14.5 pots m-2. Plots were surrounded by guard plants and there 

were two plots of each cultivar in each compartment. Some plants were transferred regularly 

from the 12D and 15D compartments to both the 18D and 21D compartments and back again 

such that they spent 0, 29, 57 or 100% of the time in a low-day temperature regime. 

Furthermore, these transfers were carried out with 1, 2 or 4 week cycles. Therefore, plants 

spending 29% of their time in the low-day regime had 2, 4 or 8 days in 12D or 15D followed 

by 5, 10 or 20 days in either 18D or 21D for the 1, 2 and 4 week cycles, respectively. Six pots 

from each compartment were used for each transfer combination, and 12 non-transferred pots 

remained in each compartment (6 in each replicate plot). 

 Plants were grown on capillary matting and were irrigated via seep hose using a 300 mg 

l-1 N: 26 mg l-1 P: 207 mg l-1 K feed. All plants were pinched in order to promote branching in 

line with commercial practice. All plants were sprayed with B-nine (1.5 g l-1) when the new 
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shoots were approximately 2 cm long. Subsequent applications were applied to plants in all 

compartments based on height measurements in the 18D compartment using graphical 

tracking. Pest and disease control strategies followed commercial practice. 

  The time at which the first flower of each pot reached flowering stage 6 (Cockshull and 

Hughes, 1972) was recorded. Plants were grown on to the marketable stage (12 flowers per 

pot having reached stage 6). One plant per pot was then randomly selected to record the 

height, leaf number, leaf area, shoot fresh weight and shoot dry weight. Data were analysed 

by ANOVA using Genstat. 

 

RESULTS 

The four glasshouse compartments maintained different day and night temperatures 

but similar mean diurnal temperatures in 2005 and 2006 (Table I).  The temperatures tended 

to be slightly higher in the autumn, at the beginning of each experiment, due to solar gain and 

high ambient temperatures; this increased the average day temperatures for the week 39 crops. 

Over the winter period greater and more consistent temperature differences were achieved 

between day and night. The achieved CO2 concentrations were similar across the four 

compartments, although, due to increased ventilation, the week 39 crops had a slightly lower 

concentration (637 µmol mol-1) compared with the week 44 and 49 crops (725 and 707 µmol 

mol-1, respectively). The mean PPFD was 9.8, 7.3 and 8.3 mol m-2 d-1 in 2005, and 8.9, 8.1 

and 9.3 mol m-2 d-1 in 2006, for the crops stuck in weeks 39, 44 and 49, respectively. This 

may explain why there was a strong interaction between week and year (P < 0.001) with the 

week 39 crop flowering slightly earlier in 2005 and the week 49 crop flowering slightly 

earlier in 2006. 
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The different temperature regimes significantly (P < 0.001) affected days to flower 

stage 6 and the marketable stage for both cultivars. Although all of the compartments 

achieved similar mean temperatures, flowering was delayed in the low-day regimes, 

particularly 12D (Figure 1). Plants that were grown at around 21°C during the day and 16°C 

at night (21D) flowered much quicker than those that were grown at around 16°C during the 

day and 21°C at night (12D), the only difference being the time at which these apparently 

sub- and supra-optimal temperatures were given. The delays at 12D tended to be greater for 

the crops stuck in weeks 44 and 49 as these experienced a greater day/night temperature 

differential. There was also a significant interaction between year and temperature treatment 

(P < 0.001) due to the fact that the 12D treatment achieved lower day temperatures in 2005 

(Table I). 

 Transferring plants between 12D and both 18D and 21D, and between 15D and both 

18D and 21D, showed that the delay in time to flowering was a linear function (P < 0.001) of 

the time spent in the low-day regime (Figure 2). There was little evidence of any interaction 

with the cycle frequency; plants flowered at the same time irrespective of whether they were 

transferred on a 1, 2 or 4 week cycle.  

 For both cultivars there were significant effects of year, sticking week and temperature 

regime, on plant height (P < 0.001) when plants were measured at marketing. Due to the 

ambient conditions changing there was also a significant interaction between year and 

sticking week. In both years the tallest plants were typically from the 21D regime while the 

shortest plants were from the 15D regime (Figure 3). Plants grown at 12D were taller than 

those from 15D (P < 0.05), probably due the delay in marketing. The differences in day and 

night temperature also affected (P < 0.01) the total number of leaves, leaf areas and shoot dry 
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weights; plants grown in 12D tended to have an increased leaf number, leaf area and dry 

weight at marketing (Figure 3).   

 

DISCUSSION 

The results support previous observations that temperature integration with higher 

vent temperatures need not result in deleterious flowering delays (Langton et al., 2003), as 

raising the day temperature slightly and compensating with lower nights had minimal impact 

on flowering time. However, greater care will clearly be needed if adopting a strategy 

whereby day heating set-points are reduced, and increased night temperatures are used under 

screens to compensate for days with little solar gain when low day temperatures are achieved. 

However, our low-day regimes were achieved by actively venting during the day (so as to 

achieve larger and more consistent day – night temperature differences), and so the 

temperature differences, and therefore delays, achieved in commercial growing would rarely 

be as extreme as in the trials reported here.  

 When adopting a temperature integration strategy with higher vent temperatures, there is 

often a compromise between energy saving and plant quality. Here the plants grown with a 

high-day and low-night temperature regime were taller, as might be expected due to longer 

internodes (Carvalho et al., 2002). Whereas the low-day and high-night regimes did not 

appear to be detrimental with regards to plant quality. These regimes tended to produce 

shorter and more compact plants which could be beneficial in reducing the need for plant 

growth regulators. However, this was not the case in the 12D treatment at marketing, 

presumably because the extended growing period more than compensated for any temperature 

effect on stem extension growth. This treatment also tended to have a higher total leaf number 
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and area and greater dry weight at marketing, again probably due to the flowering delays and 

longer growing time.  

 Mean temperature is generally considered to determine flowering time in 

chrysanthemum (Pearson et al., 1993). However, here we have shown marked delays in 

flowering through the use of low-day and high-night regimes, even though the mean 

temperature was similar to that of the control. These delays cannot be simply due to averaging 

sub- and supra-optimal temperatures (Pearson et al., 1993; Langton and Horridge, 2006) 

because the 21D treatment (which achieved around 21D/16N) would have been expected to 

give a similar delay to 12D treatment (which achieved around 16D/21N) and this was not 

found to be the case. While both cultivars (Irvine and Covington) showed delayed flowering 

in low-day and high-night regimes, the daylit controlled environment experiments of 

Cockshull et al. (1981) would suggest that cultivars vary in this regard. While many of the 

cultivars they examined appeared to respond to mean temperature, some cultivars (Hurricane 

and Elegance) were delayed when plants were grown at 10D/20N as compared with 20D/10N 

or 15D/15N (all with 12 h days and nights). 

 The reason for the difference in response to day and night temperature is unclear. Low 

day temperatures may affect photosynthesis (Warren and Dreyer, 2006) and, therefore, 

assimilate availability. This in turn may affect flowering, given the importance of light 

integral (assimilates) in determining flowering time (Pearson et al., 1993). However, here the 

dry weight data would suggest that any reduction in photosynthesis due to low day 

temperatures was minimal within the temperature range used. This would tend to cast doubt 

on this being the cause of delayed flowering in the low-day temperature regimes, although it 

is possible that any reduction in photosynthesis and therefore dry weight was masked due to 

the flowering delays.    
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 Langton and Horridge (2006) showed that chrysanthemums flowered earlier when 

grown in a 24D/14N regime as compared with alternating between continuous 14 and 24°C 

on 2 or 14 day cycles. They suggested that thermal inertia may provide a possible 

explanation, as more frequent temperature changes would result in the meristem spending less 

time at the extreme temperatures. Nevertheless they stated that tissue temperatures generally 

reach equilibrium fairly quickly after a temperature change and suggested that some other 

factor is probably responsible. Similarly in this experiment it seems unlikely that the average 

plant or apex temperatures will have differed greatly as a result of the different day and night 

temperature treatments. 

 Perhaps a more likely explanation for delayed flowering in low-day high-night regimes 

would be a different temperature response during the day and night. While there is little 

evidence to suggest a differential day or night response on the effect of temperature on the 

rates of progress to flowering (Pearson et al., 1993), it is possible that the optimum 

temperature might shift. Adams et al. (1997) showed that in pansy, mean daily light integral 

could influence the optimum temperature for flowering with the optimum temperature 

decreasing linearly (from 21.3°C) as light integral fell below 3.4 MJ m-2 d-1. If the optimum 

temperature for flowering in some chrysanthemum cultivars was lower at night than during 

the day, this could explain the responses to temperature observed here. However, further work 

would be needed to prove this; in this experiment all compartments had similar mean 

temperatures and so day and night conditions were correlated. A shift in optimum temperature 

may not have been reported previously because of cultivar differences, and because small 

differences in optimum temperature are unlikely to be noted in experiments where the 

temperature differences between treatments are relatively large or where few supra-optimal 

regimes are included. 
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Table I. Achieved average day (06:00 to 18:00), night and mean diurnal temperatures 

recorded using independent sensors for plants stuck in weeks 39, 44 and 49.  

 
 

 Week 39 Week 44 Week 49 

 Day Night 24 h  Day Night 24 h  Day Night 24 h  

2005          

12D 16.7 20.5 18.6 15.3 21.1 18.2 15.4 21.4 18.4 

15D 18.1 19.5 18.8 17.3 19.5 18.4 17.4 19.6 18.5 

18D 19.2 18.2 18.7 18.4 18.1 18.3 18.6 18.2 18.4 

21D 21.6 16.4 19.0 21.1 15.9 18.5 21.3 16.0 18.6 

2006          

12D 16.9 20.5 18.7 16.1 20.9 18.5 16.1 21.0 18.6 

15D 17.9 19.1 18.5 17.3 19.2 18.2 17.4 19.3 18.3 

18D 19.4 18.2 18.8 18.8 18.1 18.5 19.1 18.1 18.6 

21D 21.4 16.0 18.7 21.0 15.7 18.4 21.1 15.8 18.4 
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FIG. 1 

The effect of temperature regime on the number of short days to flowering (stage 6) of 

Covington in 2005 (Plate A), Covington in 2006 (Plate B), Irvine in 2005 (Plate C), and 

Irvine on 2006 (Plate D). Error bars indicate ± 1 SEM. 

Sticking week

39 44 49
0

10

20

30

40

50

60

0

10

20

30

40

50

60

0

10

20

30

40

50

60

D
ay

s 
to

 fl
ow

er

0

10

20

30

40

50

60

70

12D
15D
18D
21D

A

B

C

D



 

 17 

 

FIG. 2 

The effect of transferring plants from 12D to 18D (Plate A), 12D to 21D (Plate B),  15D to 

18D (Plate C), and 15D to 21D (Plate D) on the number of short days to flowering (stage 6). 

The data are the average values for both years and all sticking weeks. Error bars indicate ± 1 

SEM. 
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FIG. 3 

The effect of temperature regime on plant height (Plate A), total leaf number (Plate B), leaf 

area (Plate C) and shoot dry weight (Plate D). The data are the average values for both 

cultivars and years. Error bars indicate ± 1 SEM. 
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