The next generation low-background detectors operating deep underground aim
for unprecedented low levels of radioactive backgrounds. The deposition and
presence of radon progeny on detector surfaces is an added source of energetic
background events. In addition to limiting the detector material's radon
exposure in order to reduce potential surface backgrounds, it is just as
important to clean surfaces to remove inevitable contamination. Such studies of
radon progeny removal have generally found that a form of etching is effective
at removing some of the progeny (Bi and Pb), however more aggressive
techniques, including electropolishing, have been shown to effectively remove
the Po atoms. In the absence of an aggressive etch, a significant fraction of
the Po atoms are believed to either remain behind within the surface or
redeposit from the etching solution back onto the surface. We explore the
chemical nature of the aqueous Po ions and the effect of the oxidation state of
Po to maximize the Po ions remaining in the etching solution of contaminated Cu
surfaces. We present a review of the previous studies of surface radon progeny
removal and our findings on the role of oxidizing agents and a cell potential
in the preparation of a clean etching technique.Comment: Proceedings of the Low Radioactivity Techniques (LRT) 2017, Seoul,
South Korea, May 24-26, 201