9 research outputs found

    Modeling Morphology and Catalytic Activity of Nanoparticle Ensembles under Reaction Conditions

    Get PDF
    Although nanoparticle catalysts obtain different sizes and shapes under reaction conditions, computational modeling in heterogeneous catalysis is usually based on well-defined crystallographic planes. Herein, we combine density functional theory (DFT) calculations with Boltzmann statistics to describe ensembles of nanoparticles obtaining different morphologies under reaction conditions (temperature and gas-phase chemical potential) and their respective distribution of active sites. We apply our methodology on Rh catalytic nanoparticles, and we address the contribution of metastable nanostructures on the overall CO dissociation catalytic activity. Importantly, we demonstrate how catalytic trends can change when accounting for an ensemble of nanoparticles compared to a single, thermodynamically stable nanoparticle. Thus, our work enlightens the impact of statistical representation of catalyst morphology on modeling structure-sensitive reactions

    Nature and identity of the active site via structure-dependent microkinetic modeling: An application to WGS and reverse WGS reactions on Rh

    Get PDF
    We propose a methodology to perform a structure-dependent microkinetic analysis of a catalytic process. The methodology makes it possible to unveil the nature and identity of the active site in a self-consistent manner. The morphology of heterogeneous catalyst nanoparticles as a function of the gas chemical potential is determined using ab initio thermodynamics and Wulff-Kaishew construction methods. The reaction rates are calculated by integrating a microkinetic model which describes the catalytic activity of the crystal facets exposed by the catalyst under reaction conditions. The method is applied for the analysis of the direct and reverse water-gas shift (WGS) reacting systems on a 4% Rh/α-Al2O3 kinetic experiments from the literature. Our findings make it possible to rationalize that far from equilibrium the two different reacting systems not only follow different reaction pathways in agreement with the experimental evidence but also show that the dominant active sites are different for WGS and reverse WGS. Indeed, the WGS reaction occurs mainly on the Rh(111) facet, whereas reverse WGS proceeds on the active sites of Rh(100). As a whole, this methodology makes it possible a concomitant description of the nature of the catalyst material in reaction conditions and of its catalytic consequences in terms of reactivity. As such, it paves the way towards the use of first-principles methods for the interpretation of the experimental evidence in terms of structure-activity relationships

    Mechanistic and multiscale aspects of thermo-catalytic CO2conversion to C1products

    Get PDF
    The increasing environmental concerns due to anthropogenic CO2 emissions have called for an alternate sustainable source to fulfill rising chemical and energy demands and reduce environmental problems. The thermo-catalytic activation and conversion of abundantly available CO2, a thermodynamically stable and kinetically inert molecule, can significantly pave the way to sustainably produce chemicals and fuels and mitigate the additional CO2 load. This can be done through comprehensive knowledge and understanding of catalyst behavior, reaction kinetics, and reactor design. This review aims to catalog and summarize the advances in the experimental and theoretical approaches for CO2 activation and conversion to C1 products via heterogeneous catalytic routes. To this aim, we analyze the current literature works describing experimental analyses (e.g., catalyst characterization and kinetics measurement) as well as computational studies (e.g., microkinetic modeling and first-principles calculations). The catalytic reactions of CO2 activation and conversion reviewed in detail are: (i) reverse water-gas shift (RWGS), (ii) CO2 methanation, (iii) CO2 hydrogenation to methanol, and (iv) dry reforming of methane (DRM). This review is divided into six sections. The first section provides an overview of the energy and environmental problems of our society, in which promising strategies and possible pathways to utilize anthropogenic CO2 are highlighted. In the second section, the discussion follows with the description of materials and mechanisms of the available thermo-catalytic processes for CO2 utilization. In the third section, the process of catalyst deactivation by coking is presented, and possible solutions to the problem are recommended based on experimental and theoretical literature works. In the fourth section, kinetic models are reviewed. In the fifth section, reaction technologies associated with the conversion of CO2 are described, and, finally, in the sixth section, concluding remarks and future directions are provided

    Local Ordering of Molten Salts at NiO Crystal Interfaces Promotes High-Index Faceting

    Get PDF
    Given the strong influence of surface structure on the reactivity of heterogeneous catalysts, understanding the mechanisms that control crystal morphology is an important component of designing catalytic materials with targeted shape and functionality. Herein, we employ density functional theory to examine the impact of growth media on NiO crystal faceting in line with experimental findings, showing that molten-salt synthesis in alkali chlorides (KCl, LiCl, and NaCl) imposes shape selectivity on NiO particles. We find that the production of NiO octahedra is attributed to the dissociative adsorption of H2O, whereas the formation of trapezohedral particles is associated with the control of the growth kinetics exerted by ordered salt structures on high-index facets. To our knowledge, this is the first observation that growth inhibition of metal-oxide facets occurs by a localized ordering of molten salts at the crystal–solvent interface. These findings provide new molecular-level insight on kinetics and thermodynamics of molten-salt synthesis as a predictive route to shape-engineer metal-oxide crystals

    Quo vadis multiscale modeling in reaction engineering? – A perspective

    No full text
    This work reports the results of a perspective workshop held in summer 2021 discussing the current status and future needs for multiscale modeling in reaction engineering. This research topic is one of the most challenging and likewise most interdisciplinary in the chemical engineering community, today. Although it is progressing fast in terms of methods development, it is only slowly applied by most reaction engineers. Therefore, this perspective is aimed to promote this field and facilitate research and a common understanding. It involves the following areas: (1) reactors and cells with surface changes focusing on Density Functional Theory and Monte-Carlo simulations; (2) hierarchically-based microkinetic analysis of heterogeneous catalytic processes including structure sensitivity, microkinetic mechanism development, and parameter estimation; (3) coupling first-principles kinetic models and CFD simulations of catalytic reactors covering chemistry acceleration strategies and surrogate models; and finally (4) catalyst-reactor-plant systems with details on linking CFD with plant simulations, respectively. It therefore highlights recent achievements, challenges, and future needs for fueling this urgent research topic in reaction engineering

    Quo vadis multiscale modeling in reaction engineering? – A perspective

    Get PDF
    This work reports the results of a perspective workshop held in summer 2021 discussing the current status and future needs for multiscale modeling in reaction engineering. This research topic is one of the most challenging and likewise most interdisciplinary in the chemical engineering community, today. Although it is progressing fast in terms of methods development, it is only slowly applied by most reaction engineers. Therefore, this perspective is aimed to promote this field and facilitate research and a common understanding. It involves the following areas: (1) reactors and cells with surface changes focusing on Density Functional Theory and Monte-Carlo simulations; (2) hierarchically-based microkinetic analysis of heterogeneous catalytic processes including structure sensitivity, microkinetic mechanism development, and parameter estimation; (3) coupling first-principles kinetic models and CFD simulations of catalytic reactors covering chemistry acceleration strategies and surrogate models; and finally (4) catalyst-reactor-plant systems with details on linking CFD with plant simulations, respectively. It therefore highlights recent achievements, challenges, and future needs for fueling this urgent research topic in reaction engineering

    Overweight is associated to a better prognosis in metastatic colorectal cancer: A pooled analysis of FFCD trials

    No full text
    IF 7.191 (2017)International audienceBACKGROUND:Previous studies showed that high and low body mass index (BMI) was associated with worse prognosis in early-stage colorectal cancer (CRC), and low BMI was associated with worse prognosis in metastatic CRC (mCRC). We aimed to assess efficacy outcomes according to BMI.PATIENTS AND METHODS:A pooled analysis of individual data from 2085 patients enrolled in eight FFCD first-line mCRC trials from 1991 to 2013 was performed. Comparisons were made according to the BMI cut-off: Obese (BMI ≥30), overweight patients (BMI ≥ 25), normal BMI patients (BMI: 18.5-24) and thin patients (BMI <18.5). Interaction tests were performed between BMI effect and sex, age and the addition of antiangiogenics to chemotherapy.RESULTS:The rate of BMI ≥25 patients was 41.5%, ranging from 37.6% (1991-1999 period) to 41.5% (2000-2006 period) and 44.8% (2007-2013 period). Comparison of overweight patients versus normal BMI range patients revealed a significant improvement of median overall survival (OS) (18.5 versus 16.3 months, HR = 0.88 [0.80-0.98] p = 0.02) and objective response rate (ORR) (42% versus 36% OR = 1.23 [1.01-1.50] p = 0.04) but a comparable median progression-free survival (PFS) (7.8 versus 7.2 months, HR = 0.96 [0.87-1.05] p = 0.35). Subgroup analyses revealed that overweight was significantly associated with better OS in men. OS and PFS were significantly shorter in thin patients.CONCLUSION:Overweight patients had a prolonged OS compared with normal weight patients with mCRC. The association of overweight with better OS was only observed in men. The pejorative prognosis of BMI <18.5 was confirmed.Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserve
    corecore