4,419 research outputs found
On the evolution of the entropy and pressure profiles in X-ray luminous galaxy clusters at z > 0.4
Galaxy clusters are the most recent products of hierarchical accretion over
cosmological scales. The gas accreted from the cosmic field is thermalized
inside the cluster halo. Gas entropy and pressure are expected to have a
self-similar behaviour with their radial distribution following a power law and
a generalized Navarro-Frenk-White profile, respectively. This has been shown
also in many different hydrodynamical simulations. We derive the
spatially-resolved thermodynamical properties of 47 X-ray galaxy clusters
observed with Chandra in the redshift range 0.4 < z < 1.2, the largest sample
investigated so far in this redshift range with X-rays spectroscopy, with a
particular care in reconstructing the gas entropy and pressure radial profiles.
We search for deviation from the self-similar behaviour and look for possible
evolution with redshift. The entropy and pressure profiles lie very close to
the baseline prediction from gravitational structure formation. We show that
these profiles deviate from the baseline prediction as function of redshift, in
particular at z > 0.75, where, in the central regions, we observe higher values
of the entropy (by a factor of 2.2) and systematically lower estimates (by a
factor of 2.5) of the pressure. The effective polytropic index, which retains
informations about the thermal distribution of the gas, shows a slight linear
positive evolution with the redshift and the concentration of the dark matter
distribution. A prevalence of non-cool-core, disturbed systems, as we observe
at higher redshifts, can explain such behaviours.Comment: 14 pages, 18 figures, accepted for publication by A&
General static spherically symmetric solutions in Horava gravity
We derive general static spherically symmetric solutions in the Horava theory
of gravity with nonzero shift field. These represent "hedgehog" versions of
black holes with radial "hair" arising from the shift field. For the case of
the standard de Witt kinetic term (lambda =1) there is an infinity of solutions
that exhibit a deformed version of reparametrization invariance away from the
general relativistic limit. Special solutions also arise in the anisotropic
conformal point lambda = 1/3.Comment: References adde
A re-description of <i>Hensodon spinosus</i>, a remarkable coccodontid fish (Actinopterygii, †Pycnodontiformes) from the Cenomanian (Late Cretaceous) of Haqel, Lebanon
Hensodon spinosus, a rare and very peculiar pycnodontiform fish from the Upper Cenomanian limestone of the Haqel fossils quarry (Lebanon) is re-described on the basis of four new specimens. It is the only species assigned to the genus. It shares with the family Coccodontidae (sensu Poyato-Ariza & Wenz, 2002) almost all its synapomorphies but is also characterized by several unique autapomorphies. The species exhibits a rounded general shape of the body, an enormous head, an extremely reduced snout with a minute mouth gash, a horny frontal showing modifications that we interpret as dimorphic sexual differences, styliform teeth, a giant occipital process with many spines on its margins and formed by the dermosupraoccipital, the parietal and the supratemporal, a prefrontal, an edentulous, unornamented, elongated rhomboid maxilla, a very massive spiny cleithrum, a big spiny post-coelomic bone, and a few elongated bar scales. All those characters award a unique impressive aspect to the fish. Remains of the original colour pattern add information about the external aspect of this remarkable fish
Stellar Mass to Halo Mass Scaling Relation for X-ray Selected Low Mass Galaxy Clusters and Groups out to Redshift
We present the stellar mass-halo mass scaling relation for 46 X-ray selected
low-mass clusters or groups detected in the XMM-BCS survey with masses
at
redshift . The cluster binding masses are inferred
from the measured X-ray luminosities \Lx, while the stellar masses
of the galaxy populations are estimated using near-infrared imaging from the
SSDF survey and optical imaging from the BCS survey. With the measured \Lx\ and
stellar mass , we determine the best fit stellar mass-halo mass
relation, accounting for selection effects, measurement uncertainties and the
intrinsic scatter in the scaling relation. The resulting mass trend is
, the intrinsic (log-normal) scatter is
, and there is no
significant redshift trend , although
the uncertainties are still large. We also examine within a fixed
projected radius of ~Mpc, showing that it provides a cluster binding mass
proxy with intrinsic scatter of (1 in ). We
compare our scaling relation from the XMM-BCS
clusters with samples of massive, SZE-selected clusters
() and low mass NIR-selected clusters
() at redshift .
After correcting for the known mass measurement systematics in the compared
samples, we find that the scaling relation is in good agreement with the high
redshift samples, suggesting that for both groups and clusters the stellar
content of the galaxy populations within depends strongly on mass but
only weakly on redshift out to .Comment: 15 pages, 10 figures. Accepted for publication in MNRA
Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography
PURPOSE: We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients.
METHODS: Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest (99m)Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest.
RESULTS: In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress.
CONCLUSION: In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography
Quantum cascade photonic crystal surface emitting injection laser
A surface emitting quantum cascade injection laser is presented. Direct surface emission is obtained by using a 2D photonic-band-gap structure that simultaneously acts as a microcavity. The approach may allow miniaturization and on-chip-integration of the devices
Awake examination versus DISE for surgical decision making in patients with OSA: A systematic review
OBJECTIVE:
Traditionally, upper airway examination is performed while the patient is awake. However, in the past two decades, drug-induced sleep endoscopy (DISE) has been used as a method of tridimensional evaluation of the upper airway during pharmacologically induced sleep. This study aimed to systematically review the evidence regarding the usefulness of DISE compared with that of traditional awake examination for surgical decision making in patients with obstructive sleep apnea (OSA).
DATA SOURCES:
Scopus, PubMed, and Cochrane Library databases were searched.
REVIEW METHODS:
Only studies with a primary objective of evaluating the usefulness of DISE for surgical decision making in patients with OSA were selected. The included studies directly compared awake examination data with DISE outcome data in terms of possible influences on surgical decision making and operation success.
RESULTS:
A total of eight studies with 535 patients were included in this review. Overall, the surgical treatment changed after DISE in 50.24% (standard deviation 8.4) cases. These changes were more frequently associated with structures contributing to hypopharyngeal or laryngeal obstruction. However, these differences do not automatically indicate a higher success rate.
CONCLUSION:
This review emphasized the direct impact of DISE compared with that of awake examination on surgical decision making in OSA patients. However, it is also clear that the available published studies lack evidence on the association between this impact and surgical outcome
Predicting protein decomposition: the case of aspartic-acid racemization kinetics
The increase in proportion of the non-biological (D-) isomer of aspartic acid (Asp) relative to the L- isomer has been widely used in archaeology and geochemistry as a tool for dating. The method has proved controversial, particularly when used for bones. The non-linear kinetics of Asp racemization have prompted a number of suggestions as to the underlying mechanism(s) and have led to the use of mathe- matical transformations which linearize the increase in D-Asp with respect to time. Using one example, a suggestion that the initial rapid phase of Asp racemization is due to a contribution from asparagine (Asn), we demonstrate how a simple model of the degradation and racemization of Asn can be used to predict the observed kinetics. A more complex model of peptide bound Asx (Asn+Asp) racemization, which occurs via the formation of a cyclic succinimide (Asu), can be used to correctly predict Asx racemi- zation kinetics in proteins at high temperatures (95-140 °C). The model fails to predict racemization kinetics in dentine collagen at 37 °C. The reason for this is that Asu formation is highly conformation dependent and is predicted to occur extremely slowly in triple helical collagen. As conformation strongly in£uences the rate of Asu formation and hence Asx racemization, the use of extrapolation from high temperatures to estimate racemization kinetics of Asx in proteins below their denaturation temperature is called into question. In the case of archaeological bone, we argue that the D:L ratio of Asx re£ects the proportion of non- helical to helical collagen, overlain by the e¡ects of leaching of more soluble (and conformationally unconstrained) peptides. Thus, racemization kinetics in bone are potentially unpredictable, and the proposed use of Asx racemization to estimate the extent of DNA depurination in archaeological bones is challenged
Fabrication methods for a quantum cascade photonic crystal surface emitting laser
Conventional quantum cascade (QC) lasers are intrinsically edge-emitting devices with mode confinement achieved via a standard mesa stripe configuration. Surface emission in edge emitting QC lasers has therefore necessitated redirecting the waveguided laser emission using a second order grating. This paper describes the methods used to fabricate a 2D photonic crystal (PC) structure with or without a central defect superimposed on an electrically pumped QC laser structure with the goal of achieving direct surface emission. A successful systematic study of PC hole radius and spacing was performed using e-beam lithography. This PC method offers the promise of a number of interesting applications, including miniaturization and integration of QC lasers
- …
