1,493 research outputs found

    Star formation environments and the distribution of binary separations

    Get PDF
    We have carried out K-band speckle observations of a sample of 114 X-ray selected weak-line T Tauri stars in the nearby Scorpius-Centaurus OB association. We find that for binary T Tauri stars closely associated to the early type stars in Upper Scorpius, the youngest subgroup of the OB association, the peak in the distribution of binary separations is at 90 A.U. For binary T Tauri stars located in the direction of an older subgroup, but not closely associated to early type stars, the peak in the distribution is at 215 A.U. A Kolmogorov-Smirnov test indicates that the two binary populations do not result from the same distibution at a significance level of 98%. Apparently, the same physical conditions which facilitate the formation of massive stars also facilitate the formation of closer binaries among low-mass stars, whereas physical conditions unfavorable for the formation of massive stars lead to the formation of wider binaries among low-mass stars. The outcome of the binary formation process might be related to the internal turbulence and the angular momentum of molecular cloud cores, magnetic field, the initial temperature within a cloud, or - most likely - a combination of all of these. We conclude that the distribution of binary separations is not a universal quantity, and that the broad distribution of binary separations observed among main-sequence stars can be explained by a superposition of more peaked binary distributions resulting from various star forming environments. The overall binary frequency among pre-main-sequence stars in individual star forming regions is not necessarily higher than among main-sequence stars.Comment: 7 pages, Latex, 4 Postscript figures; also available at http://spider.ipac.caltech.edu/staff/brandner/pubs/pubs.html ; accepted for publication in ApJ Letter

    The orbital motion of the Arches cluster — clues on cluster formation near the galactic center

    Get PDF
    The Arches cluster is one of the most massive, young clusters in the Milky Way. Located inside the central molecular zone in the inner 200 pc of the Galactic center, it formed in one of the most extreme star-forming environments in the present-day Galaxy. Its young age of only 2.5 Myr allows us to observe the cluster despite the strong tidal shear forces in the inner Galaxy. The orbit of the cluster determines its dynamical evolution, tidal stripping, and hence its fate. We have measured the proper motion of the Arches cluster relative to the ambient field from Keck/NIRC2 LGS-AO and VLT/NAOS-CONICA NGS-AO observations taken 4.3 years earlier. When combined with the radial velocity, we derive a 3D space motion of 232 ± 30 km/s for the Arches. This motion is exceptionally large when compared to molecular cloud orbits in the GC, and places stringent constraints on the formation scenarios for starburst clusters in dense, nuclear environments

    First NACO observations of the Brown Dwarf LHS 2397aB

    Full text link
    Observations of the standard late type M8 star LHS 2397aA were obtained at the ESO-VLT 8m telescope ``Yepun'' using the NAOS/CONICA Adaptive Optics facility. The observations were taken during the NACO commissioning, and the infrared standard star LHS 2397aA was observed in the H, and Ks broad band filters. In both bands the brown dwarf companion LHS2397aB was detected. Using a program recently developed (Bouy et al., 2003) for the detection of stellar binaries we calculated the principal astrometric parameters (angular binary separation and position angle P.A.) and the photometry of LHS 2397aA and LHS 2397aB. Our study largely confirms previous results obtained with the AO-Hokupa'a facility at Gemini-North (Freed et al., 2003); however a few discrepancies are observed.Comment: 5 page

    The search for planetary mass companions to field brown dwarfs with HST/NICMOS

    Full text link
    We present the results of a high-resolution spectral differential imaging survey of 12 nearby, relatively young field L dwarfs (<1 Gyr) carried out with HST/NICMOS to search for planetary mass companions at small physical separations from their host. The survey resolved two brown dwarf binaries: the L dwarf system Kelu-1AB and the newly discovered L/T transition system 2MASS J031059+164815AB. For both systems common proper motion has already been confirmed in follow-up observations which have been published elsewhere. The derived separations of the binaries are smaller than 6 AU and consistent with previous brown dwarf binary statistics. Their mass ratios of q > 0.8 confirm the preference for equal mass systems similar to a large number of other surveys. Furthermore, we found tentative evidence for a companion to the L4 dwarf 2MASS W033703-175807, straddling the brown dwarf/planetary mass boundary and revealing an uncommonly low mass ratio system (q ~ 0.2) compared to the vast majority of previously found brown dwarf binaries. With a derived minimum mass of 10 - 15 Mjup, a planetary nature of the secondary cannot be ruled out yet. However, it seems more likely to be a very low mass brown dwarf secondary at the border of the spectral T/Y transition regime, primarily due to its similarities to recently found very cool T dwarfs. This would make it one of the closest resolved brown dwarf binaries (0.087" /pm/pm 0.015", corresponding to 2.52 ±\pm 0.44 AU at a distance of 29 pc) with the coolest (Teff ~ 600-630 K) and least massive companion to any L or T dwarf.Comment: 33 pages, 8 figures, 2 tables, accepted for publication by Ap

    GRAVITY: The AO-Assisted, Two-Object Beam-Combiner Instrument

    Full text link
    We present the proposal for the infrared adaptive optics (AO) assisted, two-object, high-throughput, multiple-beam-combiner GRAVITY for the VLTI. This instrument will be optimized for phase-referenced interferometric imaging and narrow-angle astrometry of faint, red objects. Following the scientific drivers, we analyze the VLTI infrastructure, and subsequently derive the requirements and concept for the optimum instrument. The analysis can be summarized with the need for highest sensitivity, phase referenced imaging and astrometry of two objects in the VLTI beam, and infrared wavefront-sensing. Consequently our proposed instrument allows the observations of faint, red objects with its internal infrared wavefront sensor, pushes the optical throughput by restricting observations to K-band at low and medium spectral resolution, and is fully enclosed in a cryostat for optimum background suppression and stability. Our instrument will thus increase the sensitivity of the VLTI significantly beyond the present capabilities. With its two fibers per telescope beam, GRAVITY will not only allow the simultaneous observations of two objects, but will also push the astrometric accuracy for UTs to 10 micro-arcsec, and provide simultaneous astrometry for up to six baselines.Comment: 12 pages, to be published in the Proceedings of the ESO Workshop on "The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", eds. F. Paresce, A. Richichi, A. Chelli and F. Delplancke, held in Garching, Germany, 4-8 April 200

    HST, VLT, and NTT imaging search for wide companions to bona-fide and candidate brown dwarfs in the Cha I dark cloud

    Get PDF
    We present results from a deep imaging search for companions around the young bona-fide and candidate brown dwarfs Cha Ha 1 to 12 in the Cha I dark cloud, performed with HST WFPC2 (R, I, Ha), VLT FORS1 (VRI), and NTT SofI (JHK). We find 16 faint companion candidates around five primaries with separations between 1.5" and 7" and magnitudes in R & I from 19 to 25 mag, i.e. up to 8 mag fainter than the primaries. While most of these companion candidates are probably unrelated background objects, there is one promising candidate, namely 1.5" SW off the M6-dwarf Cha Ha 5. This candidate is 3.8 to 4.7 mag fainter than the primary and its colors are consistent with an early- to mid-L spectral type. Assuming the same distance (140 pc) and absorption (0.47 mag in I) as towards the primary, the companion candidate has log (L(bol)/L(odot) = -3.0 +- 0.3. At the age of the primary (1 to 5 Myrs), the faint object would have a mass of 3 to 15 Jupiter masses according to Burrows et al. (1997) and Chabrier & Baraffe (2000) models. The probability for this companion candidate to be an unrelated fore- or background object is smaller than 0.7%, its colors are marginally consistent with a strongly reddened background K giant. One other companion candidate has infrared colors consistent with an early T-dwarf. In addition, we present indications for Cha Ha 2 being a close (0.2") binary with both components very close to the sub-stellar limit. Our detection limits are such that we should have detected all companions above 1 Jup with separations above 2" (320 AU) and all above 5 Jup at 0.35" (50 AU).Comment: A&A 384, 999-1011. appeared 2002, A&A 384, 999-101
    • …
    corecore