13 research outputs found

    PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers.

    Get PDF
    BACKGROUND: Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES: After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS: LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na(+))-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS: Flecainide 1 μmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c(+/-)). Resting membrane potential was more depolarized in Pitx2c(+/-) atria, and TWIK-related acid-sensitive K(+) channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c(+/-) atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS: PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF

    The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

    Get PDF
    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation

    Beta-catenin downregulation is required for adaptive cardiac remodeling

    No full text
    The armadillo-related protein beta-catenin has multiple functions in cardiac tissue homeostasis: stabilization of beta-catenin has been implicated in adult cardiac hypertrophy, and downregulation initiates heart formation in embryogenesis. The protein is also part of the cadherin/catenin complex at the cell membrane, where depletion might result in disturbed cell-cell interaction similar to N-cadherin knockout models. Here, we analyzed the in vivo role of beta-catenin in adult cardiac hypertrophy initiated by angiotensin II (Ang II). The cardiac-specific mifepristone-inducible alphaMHC-CrePR1 transgene was used to induce beta-catenin depletion (loxP-flanked exons 3 to 6, beta-cat(Deltaex3-6) mice) or stabilization (loxP-flanked exon 3, beta-cat(Deltaex3) mice). Levels of beta-catenin were altered both in membrane and nuclear extracts. Analysis of the beta-catenin target genes Axin2 and Tcf-4 confirmed increased beta-catenin-dependent transcription in beta-catenin stabilized mice. In both models, transgenic mice were viable and healthy at age 6 months. beta-Catenin appeared dispensable for cell membrane function. Ang II infusion induced cardiac hypertrophy both in wild-type mice and in mice with beta-catenin depletion. In contrast, mice with stabilized beta-catenin had decreased cross-sectional area at baseline and an abrogated hypertrophic response to Ang II infusion. Stabilizing beta-catenin led to impaired fractional shortening compared with control littermates after Ang II stimulation. This functional deterioration was associated with altered expression of the T-box proteins Tbx5 and Tbx20 at baseline and after Ang II stimulation. In addition, atrophy-related protein IGFBP5 was upregulated in beta-catenin-stabilized mice. These data suggest that beta-catenin downregulation is required for adaptive cardiac hypertrophy
    corecore