38 research outputs found

    The Recognition of Hypothalamo-Neurohypophysial Functions by Developing T Cells

    Get PDF
    Neuropeptide signals and specific neuropeptide receptors have been described in the thymus supporting the concept of a close dialogue between the neuroendocrine and the immune systems at the level of early T-cell differentiation. In this paper, we review recent data about neurohypophysial (NHP)-related peptides detected in the thymus from different species. We suggest that we are dealing in fact with other member(s) of the NHP hormone family, which seems to exert its activity locally through a novel model of cell-to-cell signaling, that of cryptocrine communication. This model involves exchange of signals between thymic epithelial cells and developing thymocytes. The NHP-related peptides have been shown to trigger thymocyte proliferation and could induce immune tolerance of this highly conserved neuroendocrine family

    Spectral properties of truncated Toeplitz operators by equivalence after extension

    Get PDF
    We study truncated Toeplitz operators in model spaces View the MathML source for 1<p<∞, with essentially bounded symbols in a class including the algebra View the MathML source, as well as sums of analytic and anti-analytic functions satisfying a θ -separation condition, using their equivalence after extension to Toeplitz operators with 2×2 matrix symbols. We establish Fredholmness and invertibility criteria for truncated Toeplitz operators with θ -separated symbols and, in particular, we identify a class of operators for which semi-Fredholmness is equivalent to invertibility. For symbols in View the MathML source, we extend to all p∈(1,∞) the spectral mapping theorem for the essential spectrum. Stronger results are obtained in the case of operators with rational symbols, or if the underlying model space is finite-dimensional

    A framework for the integration of green and lean six sigma for superior sustainability performance

    Get PDF
    Evidence suggests that Lean, Six Sigma and Green approaches make a positive contribution to the economic, social and environmental (i.e. sustainability) performance of organizations. However, evidence also suggests that organizations have found their integration and implementation challenging. The purpose of this research is therefore to present a framework that methodically guides companies through a five stages and sixteen steps process to effectively integrate and implement the Green, Lean and Six Sigma approaches to improve their sustainability performance. To achieve this, a critical review of the existing literature in the subject area was conducted to build a research gap, and subsequently develop the methodological framework proposed. The paper presents the results from the application of the proposed framework in four organizations with different sizes and operating in a diverse range of industries. The results showed that the integration of Lean Six Sigma and Green helped the organizations to averagely reduce their resources consumption from 20% to 40% and minimize the cost of energy and mass streams by 7-12%. The application of the framework should be gradual, the companies should assess their weaknesses and strengths, set priorities, and identify goals for successful implementation. This paper is one of the very first researches that presents a framework to integrate Green and Lean Six Sigma at a factory level, and hence offers the potential to be expanded to multiple factories or even supply chains

    A high-throughput screening of a chemical compound library in ovarian cancer stem cells

    Get PDF
    This work was performed under the frame of COST Action collaboration (COST Action CM1106). The generous contribution of AIRC (The Italian Association for Cancer Research) IG14536 to G.D. is gratefully acknowledged. A.H. acknowledges support from the János Bolyai fellowship of the Hungarian Academy of Sciences.Background: Epithelial ovarian cancer has a poor prognosis, mostly due to its late diagnosis and to the development of drug resistance after a first platinum-based regimen. The presence of a specific population of “cancer stem cells” could be responsible of the relapse of the tumor, and of the development of resistance to therapy. For this reason, it would be important to specifically target this subpopulation of tumor cells in order to increase the response to therapy. Method: We screened a chemical compound library assembled during the COST CM1106 action to search for compound classes active in targeting ovarian stem cells. We here report the results of the high-throughput screening assay in two ovarian cancer stem cells and the differentiated cells derived from them. Results and conclusion: Interestingly there were compounds active only on stem cells, only on differentiated cells and compounds active on both cell populations. Even if these data need to be validated in ad hoc dose response cytotoxic experiments, the ongoing analysis of the compound structures will open up to mechanistic drug studies to select compounds able to improve the prognosis of ovarian cancer patients.PostprintPeer reviewe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Small molecules DNA methyltransferases inhibitors

    No full text
    International audienceMethylation catalyzed by the DNA methyltransferases affects the C5 position of cytosine residues in DNA. This physiological process is active from the embryo conception, throughout all its developmental steps, and also later for the maintenance of the adult organism. Excess methylated cytosine in tumor suppressor genes is a consistent hallmark of human cancers. However, DNA methylation variation is now acknowledged to significantly contribute to genetic and common diseases. DNA methyltransferases became attractive therapeutic targets as DNA demethylation, in vitro, brought cancer cell differentiation and apoptosis. Inhibitors are already in use, alone or in combination, to treat myeloid malignancies, while clinical assays are ongoing for other diseases. DNA methylation and histone modifications are intimately correlated with epigenetic heritable modifications of gene expression that are independent of changes in the genetic sequence. Common initiatives for epigenetic research have built public databases with useful resources. The recent discovery of 5-hydroxymethyl cytosine has added new questions and challenges for the epigenome community. We review here knowledge about DNA methylation to provide researchers with the information needed to make more active inhibitors for the benefit of patients. Because of space limitations, many important works cannot be cited. We refer the reader to reviews containing these reference

    Assessment of new triplet forming artificial nucleobases as RNA ligands directed towards HCV IRES IIId loop

    No full text
    International audienceWe report the synthesis of two new artificial nucleobase scaffolds, 1 and 2, featuring adequate hydrogen bonding donors and acceptors for the molecular recognition of U:A and C:G base pairs, respectively. The tethering of these structures to various amino acids and the assessment of these artificial nucleobase-amino acid conjugates as RNA ligands against a model of HCV IRES IIId domain are also reported. Compound 1e displayed the highest affinity (Kd twice lower than neomycin – control). Moreover, it appears that this interaction is enthalpically and entropically favored

    Hypoxia inducible factor down-regulation, cancer and cancer stem cells (CSCs): ongoing success stories

    No full text
    International audienceIn cancers, hypoxia inducible factor 1 (HIF-1) is an over-expressed transcription factor, which regulates a large set of genes involved in tumour vascularization, metastases, and cancer stem cells (CSCs) formation and self-renewal. This protein has been identified as a relevant target in oncology and several HIF-1 modulators are now marketed or in advanced clinical trials. The purpose of this review is to summarize the advances in the understanding of its regulation and its inhibition, from the medicinal chemist point of view. To this end, we selected in the recent literature relevant examples of “hit” compounds, including small-sized organic molecules, pseudopeptides and nano-drugs, exhibiting in vitro and/or in vivo both anti-HIF-1 and anti-tumour activities. Whenever possible, a particular emphasis has been dedicated to compounds that selectively target CSCs
    corecore