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Spectral properties of truncated Toeplitz operators

by equivalence after extension

M. Cristina Câmara∗ and Jonathan R. Partington†

August 5, 2015

Abstract

We study truncated Toeplitz operators in model spaces Kp
θ for

1 < p < ∞, with essentially bounded symbols in a class including
the algebra C(R∞)+H+

∞
, as well as sums of analytic and anti-analytic

functions satisfying a θ-separation condition, using their equivalence
after extension to Toeplitz operators with 2 × 2 matrix symbols. We
establish Fredholmness and invertibility criteria for truncated Toeplitz
operators with θ-separated symbols and, in particular, we identify a
class of operators for which semi-Fredholmness is equivalent to invert-
ibility. For symbols in C(R∞) +H+

∞
, we extend to all p ∈ (1,∞) the

spectral mapping theorem for the essential spectrum. Stronger results
are obtained in the case of operators with rational symbols, or if the
underlying model space is finite-dimensional.

Keywords: Truncated Toeplitz operator, Toeplitz operator, equivalence by
extension, model space.
MSC: 47B35, 30H10.

1 Introduction

This paper is concerned with truncated Toeplitz operators (TTO), a natural
generalisation of finite Toeplitz matrices; these have received much attention
since they were introduced by Sarason [27]: see, for instance, [2] and the
recent survey [17]. They are encountered in various contexts, for example in
the study of finite Toeplitz matrices and finite-time convolution operators.
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By using the equivalence after extension of TTO to block Toeplitz operators
of a particular form ([10]), the corona theorem, and the solutions to certain
associated Riemann–Hilbert problems, we study here the invertibility and
Fredholmness of several classes of TTO, together with their spectra and
essential spectra.

Here our context is the Hardy space H+
p of the upper half-plane for 1 <

p < ∞, rather than simply H+
2 . Considering different values of p in (1,∞)

naturally requires new approaches to the study of TTO, providing alterna-
tives to Hilbert space methods. By doing so, we not only obtain various
results that are new even for p = 2, but we also shed light on whether the
properties that are studied, namely spectral properties of TTO, depend on
the existence of an underlying Hilbert space structure, or on the value of p.
In fact, properties such as Fredholmness, invertibility and the dimensions
of the kernels and the cokernels of Toeplitz operators in the Hardy spaces
H+

p may depend on the value of p ∈ (1,∞); it is easy to find examples
of this behaviour by considering piecewise continuous symbols of the form
gα(ξ) = ( ξ−i

ξ+i
)α ([12, 21, 23]. One would expect the same to hold for TTO

defined in a model space Kp
θ := H+

p ∩ θH−
p , where θ is an inner function;

however, somewhat surprisingly, the results obtained for the various classes
of TTO considered in this paper do not depend on p. Note however, that in
general the space Kp

θ on which the TTO are defined does depend on p: see,
for example [8, 14]. For example, this is the case for any infinite Blaschke
product θ whose zeroes are not bounded away from the real axis. Thus the
kernel of a TTO will in general depend on p.

We first consider here TTO with essentially bounded symbols of the form

g = θ̄1 a− + θ2 a+ , a± ∈ M±
∞ ,

where, denoting by R the set of all rational functions in L∞(R), M±
∞ :=

H±
∞ + R and θ1 and θ2 are inner functions such that θ divides θ1 θ2. An

important property of this class of TTO is that it is possible to determine a
solution to an associated Riemann–Hilbert problem, which makes it easier to
study; in fact, the study of general TTO presents great difficulties. Moreover
this class of symbols, which we call θ-separated, includes all functions in
H+

∞ ∪H−
∞ ∪R, and its study reveals some remarkable properties and raises

new questions.
For bounded analytic symbols we determine the spectrum of TTO on Kp

θ for
each p ∈ (1,∞), a result previously established only for p = 2 (Fuhrmann’s
extension [16] of the Livšic-Moeller theorem [22, 24, 25]). The results ob-
tained for symbols in M+

∞ allow us to describe the essential spectra of TTO
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with symbols in C(R∞) + H+
∞, extending Bessonov’s results [5] to TTO

acting on Kp
θ for all p ∈ (1,∞).

Furthermore, for rational symbols we establish necessary and sufficient con-
ditions for invertibility of the associated TTO, which enables us to give
a more geometric description of the point spectrum and the spectrum of
a TTO whose symbol R admits only one pole, and to obtain an explicit
expression for the resolvent operator (Aθ

R − λI)−1 if λ /∈ σ(Aθ
R).

Finally, for TTO defined in finite-dimensional model spaces (in which case
the space does not depend on p), we characterise the operator’s kernel and
invertibility properties, and we illustrate the results by giving a simple de-
scription of the eigenvalues and the corresponding eigenspaces of a TTO
defined in a model space with dimension 2. Those results show in particular
that, while the general case of TTO with discontinuous symbols of the form
gα mentioned above is yet to be fully investigated, in the particular case
where the model space is defined by a finite Blaschke product the dimen-
sions of the kernel and the cokernel of a TTO with a symbol of that type
(or any other symbol in L∞) do not depend on p. This is not the case for
more general model spaces, as we show in Example 3.6.

The paper is organised as follows. The equivalence after extension of TTO
to block Toeplitz operators of a particular form is explained in Section 2,
along with the remaining preliminary material. In Section 3 we discuss a
class of TTO with θ-separated symbols, and analyse their kernels and their
Fredholm properties. Section 4 is concerned with analytic symbols, and
Section 5 with C(R∞)+H+

∞ (and, in particular, rational) symbols. Finally,
in Section 6 we consider the case when the underlying model space is finite-
dimensional.

2 Preliminaries

For 1 ≤ p ≤ ∞ we let H±
p denote the Hardy spaces of the upper and

lower half-planes, recalling that for 1 < p < ∞ we have the decomposition
Lp(R) = H+

p ⊕H−
p with associated projections P+ and P−. In what follows

we take p ∈ (1,∞), unless stated otherwise. For g ∈ L∞(R) the standard
Toeplitz operator Tg is defined on H+

p by

Tg = P+(gu), u ∈ H+
p ,

and this will be extended in the obvious way to operators TG on (H+
p )2 with

essentially bounded matricial symbol G ∈ (L∞(R))2×2.
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For an inner function θ ∈ H+
∞ the model space Kp

θ may be defined as

Kp
θ = H+

p ∩ θH−
p . (2.1)

We will omit the p unless it is necessary for the sake of clarity. We then
have

Lp(R) = H−
p ⊕Kθ ⊕ θH+

p , (2.2)

and we write Pθ to denote the associated projection Pθ : Lp(R) → Kθ.
Then for g ∈ L∞(R) the standard truncated Toeplitz operator (TTO) Aθ

g is
defined as follows:

Aθ
g : Kθ → Kθ , Aθ

g = Pθ(gI)|Kθ
= Pθ(gI)|PθLp

. (2.3)

More generally, if α and θ are inner functions, we define the operator Aα,θ
g :

Kθ → Kα by
Aα,θ

g := Pα(gI)|Kθ
= Pα(gI)|PθLp

. (2.4)

If α is an inner function that divides θ in H+
∞ (we write this α � θ), let Pα,θ

denote Pθ − Pα, a projection with range equal to the shifted model space
Kα,θ := αKαθ. Then we can define

Bα,θ
g := Pα,θ(gI)|Kθ

= Pα,θ(gI)|PθLp
. (2.5)

The operators Aα,θ
g and Bα,θ

g are particular cases of general Wiener-Hopf
operators (see [28]) in Lp(R) (abbreviated to Lp), of the form

P1A|P2Lp
, (2.6)

where P1 and P2 are projections and A is an operator in Lp. We say that

Aα,θ
g and Bα,θ

g are asymmetric truncated Toeplitz operators (ATTO) in Kθ.

One of the main tools that we shall employ in this paper is the notion of
equivalence after extension. This enables to answer some questions about
truncated Toeplitz operators by reducing them to analogous questions about
block Toeplitz operators.

Definition 2.1. [3, 19, 29] The operators T : X → X̃ and S : Y →
Ỹ are said to be (algebraically and topologically) equivalent if and only
if T = ESF where E,F are invertible operators, and we write T ∼ S.
More generally, T and S are equivalent after extension if and only if there
exist (possibly trivial) Banach spaces X0, Y0, called extension spaces, and
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invertible bounded linear operators E : Ỹ ⊕Y0 → X̃⊕X0 and F : X⊕X0 →
Y ⊕ Y0, such that

(
T 0
0 IX0

)
= E

(
S 0
0 IY0

)
F. (2.7)

In this case we say that T
∗
∼ S.

Theorem 2.2. [3] Let T : X → X̃, S : Y → Ỹ be operators and assume

that T
∗
∼ S. Then

1. kerT ≃ kerS;

2. ImT is closed if and only if ImS is closed and, in that case, X̃/ ImT ≃
Ỹ / ImS;

3. if one of the operators T , S is generalised (left, right) invertible, then
the other is generalised (left, right) invertible too;

4. T is Fredholm if and only if S is Fredholm and in that case dimkerT =
dimkerS, codim ImT = codim ImS.

A key result for our purposes is the following, which was proved in [10].

Theorem 2.3. Aα,θ
g

∗
∼ TG, where G =

(
θ̄ 0
g α

)
. Here TG is a block

Toeplitz operator acting on (H+
p )2.

Indeed, for α � θ, the following relations hold:

(
Aα,θ

g 0
0 IθH+

p

)
= E1

(
PαgPθ +Qθ 0

0 I{0}

)
F1, (2.8)

where
F1 : Kθ ⊕ θH+

p → H+
p ⊕ {0} (2.9)

and
E1 : (Kα ⊕ θH+

p )⊕ {0} → Kα ⊕ θH+
p (2.10)

are invertible operators (defined in an obvious way), so Aα,θ
g

∗
∼ PαgPθ +Qθ,

and PαgPθ +Qθ
∗
∼ TG because

(
PαgPθ +Qθ 0

0 P+

)
= E2 TG F2, (2.11)
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where F2 : (H+
p )2 → (H+

p )2 and E2 : (H+
p )2 → (Kα ⊕ θH+

p ) × H+
p are

invertible operators which are explicitly defined, as well as their inverses, in
[10]. If θ � α, the result of Theorem 2.3 can be obtained by considering the
adjoint operators.

We have
ϕ1+ ∈ kerAα,θ

g ⇐⇒ ϕ1+ ∈ P1(kerTG), (2.12)

where P1(x, y) = x. Note that P1(kerTG) uniquely defines kerTG for G as
in Theorem 2.3.

If α = θ, the equality (2.11) takes the form

(
PθgPθ +Qθ 0

0 P+

)
=

(
Tθ − PθgTθ Pθ

−P+ Tθ̄

)
TG

(
P+ 0

Tθ̄(P
+ − Tg) P+

)
,

(2.13)
with

(
P+ 0

Tθ̄(P
+ − Tg) P+

)−1

=

(
P+ 0

−Tθ̄(P
+ − Tg) P+

)
(2.14)

and (
Tθ − PθgTθ Pθ

−P+ Tθ̄

)−1

=

(
Tθ̄ 0

P+ + PθgQθ Tθ

)
, (2.15)

where the operators on both sides of the previous equalities are defined in
(H+

p )2. Then we have the following.

Theorem 2.4. Aθ
g is invertible if and only if TG is invertible in (H+

p )2, with

G =

(
θ̄ 0
g θ

)
, and in that case

(Aθ
g)

−1 = Pθ[(PθgPθ +Qθ)
−1]|Kθ

(2.16)

where

(PθgPθ +Qθ)
−1 (ψ1+) = P1

[
(TG)

−1

(
Tθ̄ ψ1+

ψ1+ + PθgQθ ψ1+

)]
(2.17)

for all ψ1+ ∈ H+
p .
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Proof. The first part is a consequence of Theorems 2.2 and 2.3. If Aθ
g is

invertible, then from (2.13), (2.14) and (2.15) we have

(
PθgPθ +Qθ 0

0 P+

)−1(
ψ1+

ψ2+

)
=

(
P+ 0

−Tθ̄(P
+ − Tg) P+

)
T−1
G

(
Tθ̄ ψ1+

ψ1+ + PθgQθ ψ1+ + θψ2+

)
=

(
ϕ1+

ϕ2+

)

(2.18)
therefore

ϕ1+ = P1 T
−1
G

[(
Tθ̄ ψ1+

ψ1+ + PθgQθ ψ1+

)
+

(
0

θ ψ2+

)]
. (2.19)

Now, for (
η1+
η2+

)
:= T−1

G

(
0

θ ψ2+

)

we have

TG

(
η1+
η2+

)
=

(
0

θ ψ2+

)
⇔ P+

(
θ̄ 0
g θ

)(
η1+
η2+

)
=

(
0

θ ψ2+

)
⇔

P+

(
θ̄ 0
g θ

)(
η1+

η2+ − ψ2+

)
= 0 ⇔

(
η1+

η2+ − ψ2+

)
∈ kerTG.

Since kerTG = {0}, we have η1+ = 0. Thus, from (2.18) and (2.19) we have
(2.17), and (2.16) follows from here.

It is well known that TG is invertible if and only if G admits a canonical
Wiener–Hopf (or generalised) p-factorisation ([6, 23])

G = G−G
−1
+ (2.20)

where, taking λ±(ξ) = ξ ± i and 1/p′ = 1− 1/p,

λ−1
± G± ∈ (H±

p )2×2 , λ−1
± G−1

± ∈ (H±
p′ )

2×2 , (2.21)

G+P
+G−1

− I is defined in a dense subset of (Lp(R))
2

and admits a bounded extension to Lp(R)
2.

(2.22)

The inverse is then given by

T−1
G = G+P

+G−1
− I+ : (H+

p )2 → (H+
p )2. (2.23)
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3 Truncated Toeplitz operators with θ-separated

symbols

We study here a class of truncated Toeplitz operators Aθ
g with symbol g of

the form
g = θ̄1 a− + θ2 a+ , a± ∈ H±

∞ , (3.1)

where θ1 and θ2 are inner functions such that θ � θ1 θ2; by changing a− and
a+ if necessary, we can assume without loss of generality that

θ1 θ2 = θ. (3.2)

This class of symbols, which we call θ-separated, includes all analytic symbols
g ∈ H+

∞ (take, for instance, a− = 0, θ2 = 1) as well as the anti-analytic
symbols g ∈ H−

∞ (a+ = 0, θ1 = 1). Later in this section we also study more
general symbols.

We first address the question of describing kerAθ
g.

It is clear from Theorems 2.2 and 2.3 and from (2.12) that ϕ1+ ∈ kerAα,θ
g ,

where α, θ are inner functions, if and only if there are ϕ2+ ∈ H+
p , ϕ1−, ϕ2− ∈

H−
p such thatGϕ+ = ϕ− with ϕ± = (ϕ1±, ϕ2±) andG defined as in Theorem

2.3. Having this in mind, and considering the form of the symbol g in (3.1),
we start with the following result.

Theorem 3.1. If g1 ∈ L∞, a+ ∈ H+
∞ and θ, θ2 are inner functions with

θ2 � θ, then for every ϕ1+ ∈ H+
p the following propositions are equivalent:

(i) there exist ϕ2+ ∈ H+
p , ϕ1−, ϕ2− ∈ H−

p such that

(
θ̄ 0

g1 + θ2a+ θ

)(
ϕ1+

ϕ2+

)
=

(
ϕ1−

ϕ2−

)
; (3.3)

(ii) there exist ψ2+ ∈ H+
p , ψ1−, ψ2− ∈ H−

p such that

(
θ̄ 0
g1 θ2

)(
ϕ1+

ψ2+

)
=

(
ψ1−

ψ2−

)
(3.4)

and
ψ2+ − a+ϕ1+ ∈ θθ̄2H

+
p . (3.5)

If (i) and (ii) hold, then ϕ2+ = θ̄θ2 (ψ2+ − a+ϕ1+), ϕ1− = ψ1− and ϕ2− =
ψ2−.
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Proof. We have

(
θ̄ 0

g1 + θ2a+ θ

)
=

(
θ̄ 0
g1 θ2

)(
1 0
a+ θθ̄2

)
. (3.6)

Thus, if (i) holds, then ψ2+ = a+ϕ1+ + θθ̄2ϕ2+ ∈ H+
p and from (3.6) it

follows that (3.4) is satisfied with ψ1− = ϕ1− and ψ2− = ϕ2−.
Conversely, if (ii) holds, then it follows from (3.5) that ϕ2+ = θ̄θ2 (ψ2+ −
a+ϕ1+) ∈ H+

p and, by (3.6), the equality (3.3) is satisfied with ϕ1− = ψ1−

and ϕ2− = ψ2−.

Theorem 3.2. Let θ1, θ2 and θ be inner functions with θ1θ2 = θ and let
a− ∈ H−

∞. Then
kerAθ2,θ

θ̄1a−
= Kβθ1 (3.7)

with
β = GCD(āi−, θ2) if a− 6= 0, β = θ2 if a− = 0, (3.8)

where āi− is the inner factor of the inner-outer factorisation a− = āi−ā
o
−.

Proof. Taking (2.12) into account, we study the solutions of the Riemann–
Hilbert problem (3.4) with g1 = θ̄1a−. We have

{
θϕ1+ = ϕ1−

θ̄1a−ϕ1+ + θ2ψ2+ = ψ2− ,

which is equivalent to

{
θϕ1+ = ϕ1−

a−ϕ1− + ψ2+ = θ̄2ψ2− ,
(3.9)

and the second equation in (3.9) implies that

ψ2+ = −a−ϕ1− + θ̄2ψ2− = 0. (3.10)

It is easy to see, from Lemma 3.3 below and the first equation in (3.9), that
the solutions of (3.9) are defined by ϕ1− ∈ Kβ̄θ2, θ

with β given by (3.8),
i.e., taking the first equation of (3.9) into account, ϕ1+ ∈ Kβθ1 .

Lemma 3.3. Suppose that g+ ∈ H+
∞ and θ is inner. Then for ϕ+ ∈ H+

p we
have

g+ϕ+ ∈ θH+
p ⇔ ϕ+ ∈ β̄θH+

p

with β = GCD(gi+, θ), where g
i
+ is the inner factor of the inner-outer fac-

torization g+ = gi+ g
o
+, if g+ 6= 0, and β = θ if g+ = 0.
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Theorem 3.4. Let g be given by (3.1)–(3.2) with a± ∈ H±
∞. Then

kerAθ
g = Kθ1β̄1, θ1β

= θ1β̄1Kββ1
, (3.11)

where β is defined by (3.8) and

β1 = GCD(ai+, θ1) if a+ 6= 0, β1 = θ1 if a+ = 0. (3.12)

Proof. From Theorem 3.1, with g1 = θ̄1a−, we conclude that ϕ1+ ∈ kerAθ
g

if and only if ϕ1+ ∈ kerAθ2,θ

θ̄1a−
and (3.5) is satisfied with ψ2+ = 0, taking

(3.10) into account. Therefore ϕ1+ ∈ kerAθ
g if and only if ϕ1+ ∈ Kθ1β with

β defined by (3.8), by Theorem 3.2, and moreover

a+ϕ1+ = θ1ϕ2+ (3.13)

with ϕ2+ ∈ H+
p . By Lemma 3.3, (3.13) holds if and only if ϕ1+ ∈ θ1β̄1H

+
p

with β1 defined by (3.12).
Thus ϕ+

1 ∈ kerAθ
g if and only if ϕ+

1 ∈ Kθ1β ∩ θ1β̄1H
+
p = Kθ1β̄1,θ1β

.

Corollary 3.5. With the same assumptions as in Theorem 3.4, kerAθ
g is

finite dimensional if and only if β and β1 are finite Blaschke products, and
the operator Aθ

g is injective if and only if β and β1 are constant. In partic-

ular, if a± 6= 0, Aθ
g is injective if and only if (āi−, θ2) and (ai+, θ1) are pairs

of relatively prime inner functions.

Example 3.6. For general inner functions θ the question whether a trun-
cated Toeplitz operator Aθ

g is injective on Kp
θ can depend on p, as the fol-

lowing example shows.
Let 2 < p1 < p2 < ∞, and suppose that 1/p1 + 1/p2 = 1/r, where r > 1.
Let θ ∈ H+

∞ be the Blaschke product with zero set {i/k2 : k = 1, 2, . . .}. We
may choose a positive sequence (ak) such that the series

∞∑

k=1

ak
ξ + i/k2

converges in H+
p1

to a function f ∈ Kp1
θ that is outer (consider its imaginary

part) and not in H+
p2
. Let g = f+/f+, and consider Aθ

g. Regarded as an
operator on Kp1

θ , it has f+ in its kernel.
Now, if ϕ+ ∈ Kp

θ lies in kerAθ
g (for p = p1 or p2), then gϕ+ = ϕ− + θψ+ for

some ϕ− ∈ H−
p and ψ+ ∈ H+

p and so f+ϕ+ = f+ϕ− + f+θψ+.
We see that ψ+ = 0 and so ϕ+ ∈ kerTg. However, it follows easily from
[9, Thm 5.3] (with M = 0) that, with p = p1 or p2, all functions in kerTg
are constant multiples of f . Hence the Kp1

θ kernel of Aθ
g is one-dimensional,

while the Kp2
θ kernel is trivial.
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Truncated Toeplitz operators associated to a singular inner function are
particularly interesting, given their close connection with finite interval con-
volution equations when θ is of the form θ(ξ) = eiµξ, µ ∈ R. We have the
following:

Corollary 3.7. If θ is a singular inner function and g is given by (3.1)-
(3.2) with a± ∈ H±

∞ , then kerAθ
g and kerAθ

ḡ are either both equal to {0} or

infinite dimensional, and Aθ
g is Fredholm if and only if it is invertible.

Proof. It is clear that, in this case, β and β1 are either constant or singular
inner functions, so the first part follows from (3.11). Since TG, with

G =

(
θ̄ 0
g θ

)
, (3.14)

has Fredholm index 0 whenever TG is Fredholm, the same happens with Aθ
g;

thus it must be invertible if it is Fredholm.

From Theorem 3.4 we see in particular that, if g = a+ ∈ H+
∞ \ {0}, we have

kerAθ
a+

= θβ̄ Kβ , with β = GCD(ai+, θ) (3.15)

and, if g = a− ∈ H−
∞ \ {0},

kerAθ
a−

= Kβ , with β = GCD(āi−, θ). (3.16)

Since (Aθ
g)

∗ = Aθ
ḡ : Kq

θ → Kq
θ with 1/p + 1/q = 1 and ḡ = θ̄2 ā+ + θ1 ā−, it

also follows from Theorem 3.4 that

kerAθ
g = θ1β̄1K

p
ββ1

, ker(Aθ
g)

∗ = θ2β̄ K
q
ββ1

. (3.17)

In the case that Kp
ββ1

= Kq
ββ1

as vector spaces, we see from the closed graph
theorem that the Lp and Lq norms are equivalent on this space. Thus we
have:

Theorem 3.8. Let g take the form (3.1) with a± ∈ H±
∞ and θ1, θ2 satisfying

(3.2). Then kerAθ
g and ker(Aθ

g)
∗ are isomorphic whenever Kp

ββ1
= Kq

ββ1
.

Apart from the obvious cases that p = 2 or ββ1 is a finite Blaschke product,
necessary and sufficient conditions for the property Kp

ββ1
= Kq

ββ1
are given

by Dyakonov [13] (see also [14, 15]) and some further equivalent conditions
are given in [8]. Under these circumstances, θ̄1β1 kerAθ

g = θ̄2β ker(Aθ
g)

∗.

Using the same notation, an immediate consequence of Theorem 3.8 and
Corollary 3.7 is the following.

11



Corollary 3.9. With the same assumptions as in Theorem 3.8, Aθ
g is Fred-

holm if and only if it is semi-Fredholm; if θ is a singular inner function, Aθ
g

is invertible if and only if it is semi-Fredholm .

Note that, for all g ∈ L∞(R), we also have that Aθ
g is Fredholm if and only

if it is semi-Fredholm when p = 2. In fact, on the one hand, the equiva-
lence between Fredholmness and semi-Fredholmness for Toeplitz operators
defined in (H+

2 )2×2, with symbols whose determinants admit a bounded fac-
torisation, was proved in [1], Corollary 3.13; on the other hand, it is easy to
see from (2.12) that the conjugate-linear operator Cθ defined by

Cθ(ϕ+) = θ Pθ ϕ+ , ϕ+ ∈ H+
p , (3.18)

which maps Kθ onto Kθ isometrically, also maps kerAθ
g onto ker(Aθ

g)
∗ =

kerAθ
ḡ isometrically when p = 2. Whether Fredholmness and semi-Fred-

holmness are equivalent for TTO in all Hp settings is an open question, to
the authors’ knowledge.

By Theorems 2.2 and 2.3, we can obtain conditions for Fredholmness and
invertibility of Aθ

g by using the relations between the corresponding proper-
ties for Toeplitz operators with matrix symbols and the solutions of certain
associated Riemann–Hilbert problems ([4],[6]).
We define

CP± := {(f1±, f2±) ∈ (H±
∞)2 : inf

z∈C±
(|f1±(z)|+ |f2±(z)| ) > 0}. (3.19)

By the corona theorem, (f1±, f2±) ∈ CP± if and only if there exists a pair
(h1±, h2±) ∈ (H±

∞)2 such that

f1±(z)h1±(z) + f2±(z)h2±(z) = 1 for all z ∈ C
±. (3.20)

Now let
M±

∞ := H±
∞ +R (3.21)

where R denotes the set of all rational functions in L∞(R). We have

a± ∈ M±
∞ ⇔ a± = sA± with s ∈ GR , A± ∈ H±

∞

where GR denotes the group of invertible elements of R.
We denote by CPM

± the set of all pairs (ϕM
1±, ϕ

M
2±) ∈ (M±

∞)2 such that
ϕ±
j = rjf

±
j , j = 1, 2, with r±1

j ∈ R and (f±1 , f
±
2 ) ∈ CP±.

Identifying a pair of the form (f1, f2) with [f1 f2]
T , we have the following,

which is a direct consequence of Theorems 4.1 and 4.5 in [6]:

12



Theorem 3.10. Let G ∈ (L∞(R))2×2 with detG admitting a canonical p-
factorisation and assume that (f+, f−) is a solution to the Riemann–Hilbert
problem Gf+ = f− , f± ∈ M±

∞. Then TG is Fredholm if f± ∈ CPM
± , and

Ind TG = 0 ; moreover, TG is invertible if f± ∈ CP±.

It is clear that the determinant of any G of the form (3.14) with g ∈ L∞(R)
admits a canonical p-factorisation, since detG = 1.
We will also need the following result.

Theorem 3.11. Let G ∈ (L∞(R))2×2 with detG admitting a canonical p-
factorisation, and let f± ∈ (H±

∞)2 satisfy Gf+ = f−. If f+ ∈ CP+, then TG
is invertible if and only if f− ∈ CP−; analogously, if f− ∈ CP−, then TG is
invertible if and only if f+ ∈ CP+.

Proof. Assume that f+ = (f1+, f2+) ∈ CP+. Then, by Theorem 3.10, f− ∈
CP− is a sufficient condition for TG to be invertible; it is left to show that
f− = (f1−, f2−) ∈ CP− is a necessary condition for the invertibility of TG,
i.e., for the existence of a canonical p-factorisation of the symbol G. Let
h1+, h2+ ∈ H+

∞ satisfy (3.20); then

H+ =

(
h1+ h2+
−f2+ f1+

)
∈ G(H+

∞)2×2.

and, if G admits a canonical p-factorisation, GH−1
+ also admits a canonical

p-factorisation. We have

GH−1
+ (H+f+) = f− ⇔ GH−1

+

(
1
0

)
= f− ,

thus f− is equal to the first column in GH−1
+ . If f− /∈ CP−, then for ev-

ery ǫ > 0 there exists z0 ∈ C
− such that |f1−(z0)| + |f2−(z0)| < ǫ. Let

Gz0 be the matrix function obtained by subtracting f−(z0) from the first
column of GH−1

+ ; for sufficiently small ǫ, by the stability of the canoni-
cal p-factorization, Gz0 also admits a canonical p-factorization, i.e., TGz0

is
invertible. On the other hand, we have

Gz0

(
1
0

)
= f− − f−(z0) ⇔ Gz0

1

z − z0

(
1
0

)
=
f− − f−(z0)

z − z0

and since
1

z − z0

(
1
0

)
∈ (H+

p )2 ,
f− − f−(z0)

z − z0
∈ (H−

p )2 ,

13



we conclude that kerTGz0
6= {0}, which is impossible. Thus we must have

f− ∈ CP−.
Regarding the second part of the theorem, it is enough to apply the first
part to G−1 instead of G.

We now apply these results to truncated Toeplitz operators.

Theorem 3.12. The operator Aθ
g, with g of the form (3.1) and a± ∈ M±

∞,
is Fredholm if

(θ̄2, a−) ∈ CPM
− , (θ1, a+) ∈ CPM

+ . (3.22)

Moreover, Aθ
g is invertible if

(θ̄2, a−) ∈ CP− , (θ1, a+) ∈ CP+. (3.23)

Proof. Let

G =

(
θ̄ 0
g θ

)
. (3.24)

We have Gϕ+ = ϕ−, where ϕ+ = (θ1,−a+), ϕ− = (θ̄2, a−). If (3.22) is
satisfied then, by Theorem 3.10, TG is Fredholm; consequently, the same is
true for Aθ

g by Theorems 2.2 and 2.3. If (3.23) holds then β, β1 ∈ C and, by

Corollary 3.7, Aθ
g is injective and, therefore, invertible.

Note that, by Theorem 2.8 in [6], condition (3.22) is equivalent to having
ϕM
± = s±h± with h± ∈ CP± and s± ∈ GR ∩ H±

∞, where GR denotes the
group of invertible elements in R. Since θ1 and θ2 are inner functions, we
must then have s+ = β1, s− = β̄.

Corollary 3.13. Aθ
g is Fredholm if one of the elements in each pair (θ̄2, a−),

(θ1, a+) belongs to GR.

Proof. In this case condition (3.22) is satisfied because the meromorphic
corona problems with data (θ̄2, a−) and (θ1, a+) (see [6]) obviously have a
solution and therefore (θ̄2, a−) ∈ CPM

− and (θ1, a+) ∈ CPM
+ .

Moreover, we have the following.

Theorem 3.14. Let one of the following conditions hold:
(i) (θ1 , a+) ∈ CPM

+ ;
(ii) (θ2 , a−) ∈ CPM

− .
Then condition (3.22) is necessary and sufficient for Fredholmness of Aθ

g.
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Proof. Taking Theorem 3.12 into account, it is left to show that, under these
assumptions, Fredholmness of Aθ

g implies that (3.22) holds.
Let us first consider the case where a± ∈ H±

∞, and let β, β1 be defined by
(3.8) and (3.12), respectively. Assume for instance that (i) holds. If Aθ

g is
Fredholm, so is TG with G given by (3.24), and β, β1 are finite Blaschke
products. Let G̃ =M−GM+, with

M− =

(
β 0

a−θ2(β − β̄) β̄

)
∈ GM−

∞,

M+ =

(
β1 0

a+θ̄1(β̄1 − β1) β̄1

)
∈ GM+

∞,

i.e.,

G̃ =

(
( θ1
β1
)( θ2

β
) 0

a−β(
θ1
β1
) + a+β̄1

θ2
β

θ1
β1

θ2
β

)
.

By Theorem 3.10 in [21], TG̃ is also Fredholm. Moreover, by Corollary 3.7,
TG̃ is injective; so it is invertible. Since

G̃

(
θ1
β1

−β1a+

)
=

(
( θ2
β
)

βa−

)

and (i) is equivalent to β̄1(θ1, a+) ∈ CP+, then by Theorem 3.11 we must
have β(θ̄2, a−) ∈ CP− and thus (ii) must hold.
Assume now that a± ∈ M±

∞, and (i) holds. Then, by Theorem 2.6 in [6],
there exists R ∈ GR such that R(θ1, a+) = (γ1, ã+) ∈ CP+. On the other
hand there exists a Blaschke product B such that B̄(θ̄2, a−) = (γ̄2, ã−) ∈
(H−

∞)2. Thus, if we replace β by B̄ and β1 by R̄ in the expressions of M±

above, then G̃ =M−GM+ is of the form (3.24) with g satisfying (3.1), and
we can conclude by the previous reasoning that (γ̄2, ã−) ∈ CPM

− , and thus
(θ2, a−) ∈ CPM

− .

A simple example where at least one of the conditions (i) and (ii) of Theorem
3.14 is satisfied is the case where a+ or a− are rational functions in GR.
Another case will be considered in the next section.
Analogously, we have the following.

Theorem 3.15. Let one of the following conditions hold:
(i) (θ1, a+) ∈ CP+;
(ii) (θ̄2, a−) ∈ CP−;
then (3.23) is a necessary and sufficient condition for invertibility of Aθ

g.
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4 Fredholmness, invertibility and spectra for TTO

with analytic symbols

We now apply the results of the previous section to study truncated Toeplitz
operators with analytic symbols g+ ∈ H+

∞ and, in particular, the restricted
shift Aθ

r. For any g ∈ L∞(R), we use the notation

Gg =

(
θ̄ 0
g θ

)
. (4.1)

Recall that for p = 2, the classical Livšic–Moeller theorem [22, 24, 25] de-
scribes the spectrum of Aθ

r in terms of the spectrum Σ(θ), which may be
defined by

Σ(θ) := {ξ ∈ C
+ ∪ R∞ : lim inf

z→ξ,z∈C+
|θ(z)| = 0 }, (4.2)

where R∞ = R ∪ {∞}. A generalization to Aθ
g+

for g+ ∈ H+
∞ was given by

Fuhrmann [16], using Hilbert-space methods. We start by generalising this
result to arbitrary p.

Theorem 4.1. The operator Aθ
g+

is invertible if and only if (θ, g+) ∈ CP+.

The spectrum of Aθ
g+

is

σ(Aθ
g+
) = {λ ∈ C : inf

z∈C+
(|θ(z)|+ |g+(z)− λ| ) = 0} .

Proof. The invertibility condition is a direct consequence of Theorem 3.15,
taking θ1 = θ and θ2 = 1. In fact since, for λ ∈ C, we have Aθ

g+−λ

∗
∼

TGg+−λ
, then by Theorem 3.15 (since in this case (θ̄2, a−) = (1, 0) ∈ CP−)

the operator Aθ
g+−λ is invertible if and only if (θ, g+ − λ) ∈ CP+, i.e.,

infz∈C+ (|θ(z)|+ |g+(z)− λ| ) 6= 0.

For f ∈ H+
∞ let

fess(Σ(θ)) := {λ ∈ C : inf
z∈C+

( |θ(z)|+ |f(z)− λ| ) = 0} (4.3)

fess(Σ(θ)∩R∞) := {λ ∈ C : lim inf
z→ξ,z∈C+

( |θ(z)|+ |f(z)− λ| ) = 0 for some ξ ∈ R∞}.

(4.4)
If f is continuous in C

+ ∪ R∞, then fess(Σ(θ)) defined by (4.3) coincides
with the image of Σ(θ) by f , and analogously for fess(Σ(θ) ∩ R∞). With
these definitions, we have:
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Corollary 4.2. If g+ ∈ H+
∞, then

σ(Aθ
g+
) = (g+)ess(Σ(θ)).

To describe the point spectrum and the essential spectrum of Aθ
g+
, we define

βλ := GCD( θ, (g+ − λ)i) (4.5)

where (g+ − λ)i denotes the inner factor in an inner-outer factorisation of
g+ − λ if the latter is not the zero function, and (g+ − λ)i = θ otherwise.

Theorem 4.3. The point spectrum of Aθ
g+

is the set

σP (A
θ
g+
) = {λ ∈ C : βλ /∈ C}

and, for each λ ∈ σp(A
θ
g+
), the corresponding eigenspace is the shifted model

space
Eλ = Kβ̄λθ,θ

= β̄λθKβλ
.

Proof. It is clear from Theorem 3.4 that a necessary and sufficient condition
for the kernel of the operator Aθ

g+−λ to be non-zero is that βλ is a non-
constant inner function; on the other hand, from (3.11), we have Eλ =
kerAθ

g+−λ given as above.

Theorem 4.4. The operator Aθ
g+

is Fredholm if and only if

β ∈ FBP and β̄(θ, g+) ∈ CP+, (4.6)

where β = GCD(θ, gi+) and FBP denotes the set of all finite Blaschke prod-
ucts. The essential spectrum of Aθ

g+
is

σess(A
θ
g+
) = (g+)ess(Σ(θ) ∩ R∞).

Proof. Taking θ2 = 1, a− = 0 and f− = 1, h− = 0 as in the proof of Theorem
4.1, it is clear that condition (ii) in Theorem 3.14 is satisfied, so Aθ

g+
is

Fredholm if and only if (θ1, a+) = (θ, g+) ∈ CPM
+ , which is equivalent to

(4.6). Replacing g+ by g+ − λ with λ ∈ C, we conclude that the essential
spectrum of Aθ

g+
is the union of the sets

S1 = {λ ∈ C : βλ /∈ FBP}

and

S2 = {λ ∈ C : βλ ∈ FBP , inf
z∈C+

(
|(β̄λθ)(z)|+ |(β̄λ(g+ − λ))(z)|

)
= 0}.
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If λ ∈ S1, i. e., βλ /∈ FBP , then Σ(βλ) ∩ R∞ is not empty and, for some
ξ ∈ R∞, we must have lim inf

z→ξ,z∈C+
( |θ(z)|+ |g+(z)− λ| ) = 0; it follows that

λ ∈ (g+)ess(Σ(θ) ∩ R∞). If λ ∈ S2, then λ ∈ (g+)ess(Σ(θ) ∩ R∞) because,
when βλ ∈ FBP ,

inf
z∈C+

(
|(β̄λθ)(z)|+ |(β̄λ(g+ − λ))(z)|

)
= 0 ⇔ (4.7)

lim inf
z→ξ,z∈C+

( |θ(z)|+ |g+(z)− λ| ) = 0 for some ξ ∈ R∞.

Therefore S1 ∪ S2 ⊂ (g+)ess(Σ(θ) ∩ R∞). Conversely, if λ ∈ (g+)ess(Σ(θ) ∩
R∞), then either βλ /∈ FBP , or βλ ∈ FBP and in this case λ ∈ S2 by
(4.7).

For the restricted shift Aθ
r defined in Kp

θ , the previous results yield, for all
p ∈ (1,∞):

Corollary 4.5.

σ(Aθ
r) = r(Σ(θ)),

σP (A
θ
r) = r(Σ(θ)) ∩ D,

σess(A
θ
r) = r(Σ(θ)) ∩ T.

5 Truncated Toeplitz operators with C(R∞) + H
+
∞

symbols

We start by generalising (4.4) for f ∈ C(R∞) +H+
∞. Let f = f1 + f2 with

f1 ∈ C(R∞) and f2 ∈ H+
∞; then we define fess(Σ(θ) ∩ R∞) as

{λ ∈ C : lim inf
z→ξ,z∈C+

( |θ(z)|+ |f1(ξ) + f2(z)− λ| ) = 0 for some ξ ∈ R∞}.

(5.1)
It is clear that fess(Σ(θ)∩R∞) coincides with the image of Σ(θ)∩R∞ by f
if f ∈ C(R∞), and with the set defined in (4.4) if f ∈ H+

∞.
Let us first consider g ∈ M+

∞ , with g = s1+h+ where s1 ∈ R and h+ ∈ H+
∞

(see (3.21)). We can write

g = sg+ with s ∈ GR , g+ ∈ H+
∞

([6], Proposition 2.3). Thus, with Gg as defined in (4.1), we have

Gg = diag(1, s)Gg+ diag(1, s−1), (5.2)
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where diag(1, s±1) ∈ GR2×2. Therefore, TGg is Fredholm if and only if TGg+

is Fredholm and, by Theorem 4.4 and (4.4), this is equivalent to

lim inf
z→ξ,z∈C+

( |θ(z)|+ |g+(z)| ) > 0 for all ξ ∈ R∞. (5.3)

Since s ∈ GR, there exists ǫ > 0 such that s±1 are analytic and bounded in
the strip S defined by 0 < ℑz < ǫ, and (5.3) is equivalent to

lim inf
z→ξ,z∈S

( |θ(z)|+ |s(z)g+(z)| ) > 0 for all ξ ∈ R∞

⇔ lim inf
z→ξ,z∈C+

( |θ(z)|+ |s1(ξ) + h+(z)| ) > 0 for all ξ ∈ R∞.

Therefore we conclude that Ag−λ is not Fredholm if and only if

lim inf
z→ξ,z∈C+

( |θ(z)|+ |s1(ξ) + h+(z)− λ| ) = 0 for some ξ ∈ R∞.

We have thus proved the following.

Theorem 5.1. If g ∈ M+
∞ then σess(A

θ
g) = gess(Σ(θ) ∩ R∞), for all p ∈

(1,∞).

Corollary 5.2. Let R ∈ R. Aθ
R is Fredholm if and only if R(ξ) 6= 0 for all

ξ ∈ Σ(θ) ∩ R∞, and σess(A
θ
R) = R (Σ(θ) ∩ R∞).

In particular we see that σess(A
θ
R) = ∅ if Σ(θ) ∩ R∞ = ∅ or R ∈ GR.

We are now ready to calculate the essential spectrum of Aθ
g where g is a

symbol in C(R∞)+H+
∞. The H2 version of the following result (formulated

on the disc) may be found in [5]; the special case g ∈ C(R∞) is much older
and appears in [25, Cor. V.4.1].

Theorem 5.3. For all p ∈ (1,∞) and for g ∈ C(R∞) + H+
∞ we have

σess(A
θ
g) = gess(Σ(θ) ∩ R∞).

Proof. We prove that σess(A
θ
g) ⊇ gess(Σ(θ) ∩ R∞) by an approximation

argument. For if g = gc + h with gc ∈ C(R∞) and h ∈ H+
∞, then we

may take rational functions fn ∈ C(R∞) tending to gc uniformly, so that
An := Aθ

fn+h tends to Aθ
g in norm. We write gn = fn + h, with gn ∈ M+

∞.

Now if w 6∈ σess(A
θ
g), then since the complement of the essential spectrum

is open we see that there is a disc D(w, ǫ) which is disjoint from σess(An)
for sufficiently large n. This is a contradiction if w ∈ gess(Σ(θ)∩R∞), since
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then (gn)ess(Σ(θ) ∩ R∞) meets this disc for large n, and by Theorem 5.1,
(gn)ess(Σ(θ) ∩ R∞) = σess(An).
For the reverse inclusion σess(A

θ
g) ⊆ gess(Σ(θ)∩R∞), one may adapt Bessonov’s

argument from [5, Lem. 2.3]; namely, for w ∈ C\gess(Σ(θ)∩R∞) one can use
the corona theorem in H+

∞+C(R∞) to find functions h1, h2 ∈ H+
∞+C(R∞)

with
(g − w)h1 + θh2 = 1 a.e. on R∞.

We now have

Aθ
h1
(Aθ

g − wI) = I +KL, (Aθ
g − wI)Aθ

h1
= I +KR,

where KL and KR are compact; for the results needed for this calculation,
that

• Aθ
θ = 0, and

• for g ∈ C(R∞) and h ∈ L∞(R) the semi-commutators Aθ
gA

θ
h − Aθ

gh

and Aθ
hA

θ
g −Aθ

gh are compact (see [18]),

hold for H+
p as well.

For rational symbols, we can establish invertibility conditions and thus say
more about the spectrum of Aθ

R, with R ∈ R. This leads to the question of
characterising the kernel of TGR

bearing in mind that, if Aθ
R is Fredholm,

then it is invertible if and only if kerAθ
R = {0}, which is equivalent to

kerTGR
= {0}.

Theorem 5.4. Let R = PN

P
C− P

C+
∈ L∞, where PN is a polynomial of degree

N and PC± are polynomials with zeroes in C
±, at most, with degrees N±,

respectively (N ≤ N+ + N−). We have kerTGR
6= {0} if and only if there

are polynomials Q1 and Q2, with degQ1 < N+ and degQ2 < N− such that

Q1PC− +Q2PC+θ

PN

∈ H+
p \ {0} ,

Q1PC− θ̄ +Q2PC+

PN

∈ H−
p \ {0}. (5.4)

Proof. We have ϕ+ ∈ kerTGR
if and only if ϕ+ ∈ (H+

p )2 is a solution to the
Riemann–Hilbert problem

GR ϕ+ = ϕ− , ϕ± ∈ (H±
p )2. (5.5)

Taking ϕ± = (ϕ1±, ϕ2±), (5.5) is equivalent to
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{
θ̄ϕ1+ = ϕ1−

Rϕ1+ + θϕ2+ = ϕ2− .
(5.6)

From the second equation in (5.6) we have

Rϕ1+ + θϕ2+ = ϕ2− =
Q1

PC+

,

where Q1 is a polynomial with degQ1 < N+, and taking into account the
first equation in(5.6), we also obtain

Rϕ1− −
Q1

PC+

θ̄ = −ϕ2+ =
Q2

PC−

,

where Q2 is a polynomial with degQ2 < N−. It follows that we must have

ϕ1+ =
Q1PC− +Q2PC+θ

PN

∈ H+
p (5.7)

ϕ1− =
Q1PC− θ̄ +Q2PC+

PN

∈ H−
p , (5.8)

and it is clear that a necessary and sufficient condition for the kernel of
TGR

(or, equivalently, Aθ
R) to be nontrivial is that, for some polynomials Q1

and Q2, with degQ1 < N+ and degQ2 < N−, the conditions in (5.4) are
satisfied.

It follows that λ ∈ σ(Aθ
R) if and only if either λ ∈ R (Σ(θ) ∩ R∞), or there

are polynomials Q1 and Q2 such that

Q1PC− +Q2PC+θ

PN − λPC+ PC−

∈ H+
p \ {0} ,

Q1PC− θ̄ +Q2PC+

PN − λPC+ PC−

∈ H−
p \ {0}. (5.9)

Remark 5.5. Although (5.9) does not immediately provide a clear geometric
description of the spectrum of Aθ

R for rational symbols with more than one
pole, it nevertheless provides a simple criterion to know whether a particular
value of λ ∈ C belongs to σ(Aθ

R). Thus, for instance, if θ(ξ) = eiξ and

R(ξ) = (ξ−i)(ξ+2i)
(ξ+i)(ξ−2i) , we easily see that 0 /∈ σ(Aθ

R), i.e., A
θ
R is invertible.

From these conditions we easily obtain a simple geometric description of
the spectrum σ(Aθ

R) when R is a rational function with just one pole, as in
Corollary 4.5 for the restricted shift Aθ

r . Assuming that

R(ξ) =
Aξ +B

ξ − z0
, (5.10)
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with Az0 +B 6= 0, z0 ∈ C \ R, the function

F : C∞ → C∞ , F (λ) =
z0λ+B

λ−A

is a bijection and we have

λ = R(ξ) ⇔ ξ = F (λ).

Let ΓR denote the closed contour defined by w = R(ξ), ξ ∈ R, and let Γ∗
R

be its image in the complex plane, i.e., Γ∗
R = R(R∞). Note that

λ ∈ Γ∗
R ⇔ F (λ) ∈ R∞

and, if λ /∈ Γ∗
R, we have, for z0 ∈ C

∓,

λ ∈ Int ΓR ⇔

∮

ΓR

1

w − λ
dw 6= 0 ⇔ F (λ) ∈ C

±.

Theorem 5.6. For all p ∈ (1,∞) and for R given by (5.10), we have
σ(Aθ

R) = σess(A
θ
R) ∪ σP (A

θ
R) = R(Σ(θ)) with

σess(A
θ
R) = R(Σ(θ) ∩ R∞) = R(Σ(θ)) ∩ Γ∗

R, (5.11)

σP (A
θ
R) = R(Σ(θ) ∩ C

+) = R(Σ(θ)) ∩ Int ΓR. (5.12)

Proof. The equality in (5.11) is an immediate consequence of the previous
results. Now let, for example, z0 ∈ C

− in (5.10). From (5.9) it follows that
kerAθ

R−λ 6= {0} if and only if there exists Q2 ∈ C \ {0} such that

ϕ1+ =
Q2 θ

(A− λ)ξ +B + λz0
∈ H+

p , (5.13)

ϕ1− =
Q2

(A− λ)ξ +B + λz0
∈ H−

p . (5.14)

If λ ∈ C \ Int ΓR, then the denominator in (5.14) vanishes for ξ = F (λ) ∈
R∞ ∪ C

− and thus (5.14) is satisfied only if Q2 = 0. If λ ∈ Int ΓR, then
F (λ) ∈ C

+ and (5.14) is satisfied for any Q2 ∈ C, but (5.13) implies that we
must have θ(F (λ)) = 0. Therefore kerAR−λ 6= {0} if and only if F (λ) ∈ C

+

and θ(F (λ)) = 0, so that (5.12) holds.
The case z0 ∈ C

+ is similar, or can be deduced from the above by considering
adjoints.
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If λ belongs to the resolvent of Aθ
R, an analogous approach allows us, more-

over, to determine (Aθ
R − λI)−1 from (TGR−λ

)−1 by means of (2.8) and
(2.11). For those values of λ, GR−λ admits a canonical Wiener–Hopf (or
generalised) p-factorisation (see (2.20)-(2.22))

GR−λ = G−G
−1
+ (5.15)

and the inverse of TGR−λ
is given by

(TGR−λ
)−1 = G+P

+G−1
− I+ : (H+

p )2 → (H+
p )2. (5.16)

The factors G± can be explicitly determined by solving the Riemann–Hilbert
problem

GR−λf+ = f− , f± ∈ (H±
p )

2, (5.17)

where we assume that λ /∈ σ(Aθ
R) = R(Σ(θ)). In this case the Riemann–

Hilbert problem (5.17) admits two linearly independent solutions (f1+, f1−)
and (f2+, f2−), and we can take (f1+, f2+) (respectively, (f1−, f2−)) as the
two columns of G−1

+ (respectively, G−), according to the following result,
which was proved in [11] for p = 2, but is equally valid for any p ∈ (1,∞).

Theorem 5.7. Let G possess a canonical generalised p-factorisation. Then,
if (ϕ+, ϕ−) and (ψ+, ψ−) are two solutions to the equation

Gϕ+ = rϕ− , ϕ± ∈ (H±
p )2

such that det[ϕ+, ψ+] (ξ) 6= 0 for some ξ ∈ C
+, then we can choose the

factors in (2.20) to be G± = [ϕ±, ψ±].

As an illustration we consider the case of the truncated shift, with R = r.
Using Theorem 5.7, we obtain, for G± in (5.15), assuming that λ /∈ σ(Aθ

r) =
r(Σ(θ)):

G− = [g−jk] , G+ = [g+jk] , j, k ∈ {1, 2},

where, defining ξλ := i1+λ
1−λ

and θλ = θ(ξλ) if |λ| ≤ 1 , θλ = θ(ξλ) if |λ| > 1:
(i) for λ 6= 1

g+11 =
θ(ξλ + i)− θλ(ξ + i)

(ξλ + i)(ξ − ξλ)
, g+21 = −

1− λ

ξ + i
,

g+12 =
θξ(ξλ + i)− θλξλ(ξ + i)

(ξλ + i)(ξ − ξλ)
, g+22 = −

(1− λ)ξ

ξ + i
,

g−11 =
(ξλ + i)− θλ(ξ + i)θ̄

(ξλ + i)(ξ − ξλ)
, g−21 = −

(1− λ)θλ
ξλ + i

,

g−12 =
ξ(ξλ + i)− θλξλ(ξ + i)θ̄

(ξλ + i)(ξ − ξλ)
, g−22 = −

(1− λ)θλξλ
ξλ + i

;
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(ii) for λ = 1

g+11 = θ , g+21 =
2i

ξ + i
, g+12 = [θ − θ(∞)]ξ − iθ(∞) , g+22 =

2iξ

ξ + i
,

g−11 = 1 , g−21 = 0 , g−12 = [1− θ̄θ(∞)]ξ − iθ̄θ(∞) , g−22 = 2iθ(∞).

We remark that G± ∈ G(H±
∞)2×2, i.e., the canonical factorisation is bounded

and does not depend on p. Thus the operator G+P
+G−1

− I+ is defined in
(H+

p )2 and (Aθ
r)

−1 is given by (2.16), (2.17) and (2.23), with G± defined as
above, for all p ∈ (1,∞).

6 Truncated Toeplitz operators on finite-dimensional

model spaces

Let B be a finite Blaschke product

N∏

j=1

(
ξ − zj
ξ − zj

)mj

, zj ∈ C
+ ,

N∑

j=1

mj = n , (6.1)

and let AB
g be a TTO with symbol g ∈ L∞ defined in KB. By Theorem 2.3

AB
g

∗
∼ TG where G =

(
B̄ 0
g B

)
. (6.2)

It is clear that AB
g is Fredholm with index zero for any g ∈ L∞, thus it is

invertible if and only if kerAB
g = {0}, i.e., kerTG = {0}. Now, characterising

kerTG is equivalent to solving the Riemann–Hilbert problem

Gϕ+ = ϕ−, ϕ± ∈ (H±
p )2, (6.3)

which, taking ϕ± = (ϕ1±, ϕ2±), can be written as

{
B̄ϕ1+ = ϕ1−

gϕ1+ +Bϕ2+ = ϕ2− .
(6.4)

From the first equation we have

ϕ1+ =
Pn−1

Pz̄1,...,z̄N

with Pn−1 ∈ Pn−1 , Pz̄1,...,z̄N =
N∏

j=1

(z − z̄j)
mj (6.5)
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and, substituting in the second equation of (6.4), we get

P+

(
g
Pn−1

Pz̄1,...,z̄N

)
+Bϕ2+ = −P−

(
g
Pn−1

Pz̄1,...,z̄N

)
+ ϕ2− = 0 .

Therefore,

Bϕ2+ = P+

(
g
Pn−1

Pz̄1,...,z̄N

)
(6.6)

and it follows that (6.3) has a nonzero solution if and only if the function
on the right-hand side of (6.6) has a zero of order mj at each point zj , j =
1, 2, ..., N . Writing

Pn−1 = C0 + C1ξ + ...+ Cn−1ξ

where C0, C1, ..., Cn−1 ∈ C, that condition is equivalent to the existence of
a nontrivial solution to the linear system

[Mk,l]C = 0, C = [C0 C1, ... , Cn−1]
T (6.7)

with

Mk,l =

[
dsk
dξsk

P+(ξlg)

]

(wk)

, k, l = 0, 1, ..., n− 1, (6.8)

where sk and wk are defined by





sk = k , wk = z1 , if k = 0, ...,m1 − 1 ,
sk = k −m1 , wk = z2 , if k = m1, ...,m1 +m2 − 1 ,

...
sk = k − (m1 + ...+mN−1) , wk = zN , if k = m1 + ...+mN−1 .

(6.9)
We have thus proved the following.

Theorem 6.1. The operator AB
g is invertible if and only if

det [Mk,l]k,l=0,...,n−1 6= 0 (6.10)

where the entries Mk,l are defined by (6.8) and (6.9).

Using the factorisation
B = h−r

nh+ (6.11)

with n ∈ N, h± ∈ G(R∩H±
∞) and h−1

− = h+, we also have:
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Theorem 6.2. The operator AB
g is invertible in KB if and only if Arn

g̃ is
invertible in Krn, where

g̃ = h−1
− gh+. (6.12)

Proof. From (6.11) it follows that G can be factorised as

G =

(
h+ 0
0 h−

)(
r−n 0
g̃ rn

)(
h− 0
0 h+

)
. (6.13)

Denoting by G̃ the middle factor on the right-hand side of (6.13), and taking
into account that the left-hand side factor is invertible in (H−

∞)2×2, while
the right-hand side factor is invertible in (H+

∞)2×2, we have

AB
g is invertible ⇔ TG is invertible ⇔ TG̃ is invertible ⇔ AB

g̃ is invertible.

Corollary 6.3. The operator AB
g is invertible in KB if and only if

det [gk,l]k,l=0,...,n−1 6= 0 (6.14)

where

gk,l = (g̃+l )
(k)
(i) with g̃+l = P+(

g̃

ξ + i
rl) , l == 0, ..., n− 1.

Proof. Following the proof of Theorem 6.1 with g̃ and rn instead of g and
B, respectively, equation (6.6) becomes

rnϕ2+ = −P+

(
g̃
Pn−1

(ξ + i)n

)
. (6.15)

Using the equality

Pn−1

(ξ + i)n
=
A0 +A1r + ...+An−1r

n−1

ξ + i

where A0, A1, ..., An−1 ∈ C, the matrix equation (6.7) can be replaced by

[gk,l]A = 0 , A = [A0 A1, ... , An−1]
T

which has a nontrivial solution if and only if (6.14) holds.
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Note that, using the relation

P±(rf) = rf± ∓
2i

ξ + i
f−(−i) (6.16)

where f ∈ Lp and f
± = P±f , all the elements gk,l in (6.14) can be expressed

in terms of g̃±0 := P±

(
g̃

ξ + i

)
and their derivatives at ±i, respectively.

The invertibility criteria of Theorem 6.2 and Corollary 6.3 enable us to deter-
mine the n eigenvalues (counting their multiplicity) ofAB

g and to characterise
the corresponding eigenspaces, as illustrated in the following example.

Example Let B = r2, g ∈ L∞. By Corollary 6.3, and using (6.16), for any
λ ∈ C the operator Ar2

g−λ is invertible if and only if

det

(
(g+0 )(i) −

λ
2i −(g−0 )(−i)

(g+0 )
′
(i) +

λ
(2i)2

1
2i [((g

+
0 )(i) −

λ
2i) + (g−0 )(−i)]

)
6= 0.

Thus, the eigenvalues of Ar2

g are the zeroes of the second degree polynomial
in λ

D(λ) = [(g+0 )(i) −
λ

2i
]2 + (g−0 )(−i)[(g

+
0 )(i) + 2i(g+0 )

′
(i)].

If
(g+0 )(i) + 2i(g+0 )

′
(i) = 0 , (6.17)

then we have a double zero

λ0 = 2i(g+0 )(i). (6.18)

The corresponding eigenspace kerAr2

g−λ0
is determined by the solutions of

the equation
(

(g+0 )(i) −
λ0

2i −(g−0 )(−i)

(g+0 )
′
(i) +

λ0

(2i)2
1
2i [((g

+
0 )(i) −

λ0

2i ) + (g−0 )(−i)]

)(
A0

A1

)
=

(
0
0

)
.

(6.19)
It is easy to see that

kerAr2

g−λ0
= span{

1

ξ + i
} , if (g−0 )(−i) 6= 0 (6.20)

kerAr2

g−λ0
= Kr2 , if (g−0 )(−i) = 0. (6.21)

If (6.17) is not satisfied, then Ar2

g has two simple eigenvalues, and the cor-
responding eigenspaces can be determined analogously from (6.19).
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