783 research outputs found

    Industrial portfolio responses to macroeconomic shocks : an econometric model for developing countries

    Get PDF
    This study identifies the macro conditions under which industrial growth and financial stability are most likely, and those conditions which are most prone to create disaster. The paper models interest rates, exchange rates, and aggregate demand conditions as affecting industrial growth and financial risk through two channels. First, because these variables affect firms'income, they affect firms net worth expansion. Second, because the link between macro variables and income depends upon the proportions in which firms hold fixed capital, inventories, financial assets, and debts, changes in macro variables also induce portfolio adjustments. The paper then develops an empirical model which allows one to calibrate the strength and timing of each effect. The paper is composed of two sections; one to develop the model, and one to report an application to Uruguayan data. There is also a brief summary section.Economic Theory&Research,Environmental Economics&Policies,International Terrorism&Counterterrorism,Banks&Banking Reform,Fiscal&Monetary Policy

    On some physics to consider in numerical simulation of erosive cavitation

    Full text link
    This paper discusses several mechanisms in erosive cavitation, which are all important to capture, and study, when assessing the risk of erosion. In particular we introduce the concept of primary and secondary cavitation in order to put emphasis on a particular class of mechanisms: cavitation created in the secondary flow field governed by, e.g., a shedding or collapse of a primary created cavity. These secondary cavities are almost always erosive and have previously not been well described in the literature. The role of cloud cavitation is partly reconsidered and a hypothesis for development of vortex group cavitation, a type of secondary cavitation, is presented. An underlying part of the discussion is how the described cavitation mechanisms influence numerical simulation of cavitation nuisance.http://deepblue.lib.umich.edu/bitstream/2027.42/84223/1/CAV2009-final180.pd

    Reconciling place attachment with catchment-based flood risk management:What can we learn from film?

    Get PDF
    A catchment-based approach to flood risk management (FRM) is gaining prominence in the United Kingdom. It is undertaken with wider awareness of multiple stakeholders, as part of a catchment scale understanding, and, as with other approaches, can visually re-shape place. Land cover and land management change at this scale also has the potential to reconfigure landscape values and place attachment. Researchers have used qualitative, quantitative, and mapping approaches to understand place attachment. Here we explore secondary data, specifically, we transcribe and code the stories of five Mytholmroyd, West Yorkshire residents from the short film, Calder about the December 26, 2015 floods. We find place attachment, identity, and social capital are interconnected and feature strongly in the mitigation and prevention phase, post-disaster. Our findings suggest better understanding of place attachment can support a more catchment scale approach to FRM policy and practice

    Calculation of a complete set of spin observables for proton elastic scattering from stable and unstable nuclei

    Get PDF
    A microscopic study of proton elastic scattering from unstable nuclei at intermediate energies using a relativistic formalism is presented. We have employed both the original relativistic impulse approximation (IA1) and the generalised impulse approximation (IA2) formalisms to calculate the relativistic optical potentials, with target densities derived from relativistic mean field (RMF) theory using the NL3 and FSUGold parameter sets. Comparisons between the optical potentials computed using both IA1 and IA2 formalisms, and the different RMF Lagrangians are presented for both stable and unstable targets. The comparisons are required to study the effect of using IA1 versus IA2 optical potentials, with different RMF parameter sets, on elastic scattering observables for unstable targets at intermediate energies. We also study the effect of full-folding versus the factorized form of the optical potentials on elastic scattering observables. As with the case for stable nuclei, we found that the use of the full-folding optical potential improves the scattering observables (especially spin observables) at low intermediate energy (e.g. 200MeV). No discernible difference is found at a projectile incident energy of 500 MeV. To check the validity of using localized optical potential, we calculate the scattering observables using non-local potentials by solving the momentum space Dirac equation. The Dirac equation is transformed to two coupled Lippmann-Schwinger equations, which are then numerically solved to obtain elastic scattering observables. The results are discussed and compared to calculations involving local coordinate-space optical potentials

    Regional and developmental brain expression patterns of SNAP25 splice variants

    Get PDF
    SNAP25 is an essential SNARE protein for regulated exocytosis in neuronal cells. Differential splicing of the SNAP25 gene results in the expression of two transcripts, SNAP25a and SNAP25b. These splice variants differ by only 9 amino acids, and studies of their expression to date have been limited to analysis of the corresponding mRNAs. Although these studies have been highly informative, it is possible that factors such as differential turnover of the SNAP25 proteins could complicate interpretations based entirely on mRNA expression profiles

    A quantum algorithm for solving open system dynamics on quantum computers using noise

    Full text link
    In this paper we present a quantum algorithm that uses noise as a resource. The goal of our quantum algorithm is the calculation of operator averages of an open quantum system evolving in time. Selected low-noise system qubits and noisy bath qubits represent the system and the bath of the open quantum system. All incoherent qubit noise can be mapped to bath spectral functions. The form of the spectral functions can be tuned digitally, allowing for the time evolution of a wide range of open-system models at finite temperature. We study the feasibility of this approach with a focus on the solution of the spin-boson model and assume intrinsic qubit noise that is dominated by damping and dephasing. We find that classes of open quantum systems exist where our algorithm performs very well, even with gate errors as high as 1%. In general the presented algorithm performs best if the system-bath interactions can be decomposed into native gates.Comment: 19 pages, 8 figures in total: 10 pages main text with 7 figure

    Quadrupole Pairing Interaction and Signature Inversion

    Get PDF
    The signature inversion in the \pi h11/2 \otimes \nu h11/2 rotational bands of odd-odd Cs and La isotopes and the \pi h11/2 \otimes \nu i13/2 bands of odd-odd Tb, Ho and Tm nuclei is investigated using pairing and deformation self consistent mean field calculations. The model can rather satisfactorily account for the anomalous signature splitting, provided that spin assignments in som of the bands are revised. Our calculations show that signature inversioncan appear already at axially symmetric shapes. It is found that this is due to the contribution of the \lambda\mu=22 component of the quadrupole pairing interaction to the mean field potential.Comment: 17 pages, 14 figures, Nuclear Physics A in prin

    GDR in Superdeformed Nuclei

    Get PDF
    A search for the gamma decay of the Giant Dipole Resonance built on superdeformed nuclear configurations was made. The superdeformed states of the Eu-143 nucleus were populated using the reaction Pd-110(Cl-37, 4n)Eu-143 at a beam energy of 165 MeV. High energy gamma-rays were detected in 8 large BaF2 scintillators in coincidence with discrete transitions measured with part of the NORDBALL array (17 HPGe detectors and a 2 pi multiplicity filter). Spectra of high-energy gamma-rays gated by low-energy transitions from states fed by the superdeformed bands show an excess yield in the 7-10 MeV region with respect to those gated by transitions from states not populated by the superdeformed bands. Because the dipole oscillation along the superdeformed axis of the nucleus is expected to have a frequency corresponding to approximate to 8 MeV (low energy component of the GDR strength function), the present result gives the first experimental indication of gamma-ray emission of the GDR built on a superdeformed states

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon
    • 

    corecore