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Calculation of a complete set of spin observables for proton elastic
scattering from stable and unstable nuclei
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A microscopic study of proton elastic scattering from unstable nuclei at intermediate energies using a relativistic
formalism is presented. We have employed both the original relativistic impulse approximation (IA1) and
the generalized impulse approximation (IA2) formalisms to calculate the relativistic optical potentials, with
target densities derived from relativistic mean field (RMF) theory using the NL3 and FSUGold parameter sets.
Comparisons between the optical potentials computed using both IA1 and IA2 formalisms and the different RMF
Lagrangians are presented for both stable and unstable targets. The comparisons are required to study the effect
of using IA1 versus IA2 optical potentials, with different RMF parameter sets, on elastic scattering observables
for unstable targets at intermediate energies. We also study the effect of full-folding form versus the factorized
form of the optical potentials on elastic scattering observables. As with the case for stable nuclei, we found that
the use of the full-folding optical potential improves the scattering observables (especially spin observables)
at low intermediate energy (e.g., 200 MeV). No discernible difference is found at a projectile incident energy
of 500 MeV. To check the validity of using localized optical potential, we calculate the scattering observables
using nonlocal potentials by solving the momentum space Dirac equation. The Dirac equation is transformed
to two coupled Lippmann-Schwinger equations, which are then numerically solved to obtain elastic scattering
observables. The results are discussed and compared to calculations involving local coordinate-space optical
potentials.
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I. INTRODUCTION

The availability of high-intensity radioactive ion beams
(RIB) has made elastic and inelastic proton scattering from
unstable nuclei available to study and the old theories of
nuclear physics are now being tested in new settings, the limits
of nuclear stability are being probed, and surprising results
have been obtained thus far. Major surprises in low-energy
nuclear structure include the disappearance of the normal shell
closures observed near the stability valley, appearance of new
magic numbers, exotic features of nuclear structure such as
nuclear halos and skins, and new regions of deformation [1,2].
Structure and reaction studies of unstable nuclei will have
great impact on astrophysics because they are known to play
an important role in nucleosynthesis. Radioactive ion beam

*wasiu.yahya@gmail.com
†bventel@sun.ac.za
‡kaya.christel@gmail.com
§bark@tlabs.ac.za

facilities will make available large amounts of unstable nuclei
data and will enhance the study of unstable nuclei via electron
and proton scattering.

One of the reaction processes to study both stable and
unstable nuclei is elastic scattering. Employing electron and
proton scattering, one can obtain information on the neutron
ground-state density and transition density distributions [1,3].
At intermediate energies (100–1000 MeV), a good tool to
probe nucleon density distributions is proton elastic scattering,
because of its larger mean free path in the nuclear medium.
The mean free path of intermediate-energy protons in nuclear
matter is large enough to penetrate into the nucleus, thus
providing some sensitivity to the nuclear interior. The nuclear
reaction mechanism becomes simpler at intermediate energies
since the velocity of the projectile is much faster than the Fermi
motion of the bound nucleons [4–7]. A considerable number of
works have therefore been devoted to proton elastic scattering
to determine interactions and nuclear structures even in the
nuclear interior. It has been stated that the best energy region
to deduce the density distribution in nuclei is between 200
and 400 MeV per nucleon, where the mean free path of the
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nucleon in nuclei is expected to be large and the scattering
does not suffer much from meson production. The new facility
at RIKEN (RIBF) will be able to supply the sufficient unstable
nuclear beam in this energy region.

Elastic proton scattering yields information on the nuclear
matter distributions and the effective nucleon-nucleon poten-
tials. Inelastic scattering toward low-lying collective states
gives access to transition probabilities and nuclear defor-
mations, and is a well-suited tool to scan new regions of
deformation. Proton scattering experiments on unstable nuclei
are performed in inverse kinematics, where the radioactive
beam strikes a target containing the protons. This is because the
lifetime of unstable nuclei are too short to prepare as targets
in most cases. In direct kinematics, the light particle (in our
case, proton) is accelerated onto the stationary heavy target,
while in inverse kinematics the heavy particle is accelerated
and the light particle (proton) serves as the target. Very good
sensitivity and high resolution are required for experiments
in inverse kinematics in order to detect rare events with high
efficiency and to have the maximum information possible with
low statistics [1,2]. It is sometimes experimentally difficult to
detect the heavy fragment in inverse kinematics because of the
short lifetime of unstable nuclei. Hence, the energy and angle
of the recoiling protons are therefore measured for this type of
reaction, from which the scattering angle and excitation energy
can be deduced.

Proton elastic and inelastic scattering studies of proton-rich
30S and 34Ar isotopes at 53 and 47 MeV/A have been performed
[6]. Secondary beams from the MUST silicon detector array
and the Large Heavy Ion National Accelerator (GANIL)
facility were used in the experiment. It was found from the
study that there was no indication of a proton skin in the
two nuclei. Angular distributions of proton elastic scattering
at 277–300 MeV per nucleon on 9C was studied in Ref. [8].
The experiment was performed in inverse kinematics at GSI
Darmstadt, and the relativistic impulse approximation was
used to analyze the angular distribution. The recoil angle and
recoil energy of the proton were measured using the recoil
proton spectrometer they developed. At the same facility,
6He, 8He, 8B, 6Li, 8Li, 9Li, 11Li, and 12,14Be have been
studied at intermediate energies [9–12]. At RIKEN, the proton
scattering of 16C at 300 MeV/A has been carried out in inverse
kinematics [13].

In this paper, proton elastic scattering from unstable nuclei
at intermediate projectile laboratory energy is studied using the
relativistic impulse approximation (IA1) and generalized rela-
tivistic impulse approximation (IA2) formalisms. To calculate
the elastic scattering spin observables needed to study these
nuclei, one requires the Lorentz-invariant nucleon-nucleon
(NN ) amplitudes and the bound-state wave functions of the
target nuclei. The bound-state wave functions are calculated
using relativistic mean field theory with the NL3 and FSUGold
parameter sets. The nucleon-nucleon amplitudes to be em-
ployed are those used in the IA1 and IA2 formalisms. It is
an open question as to what effect the use of IA1 versus IA2
will have in the study of scattering experiments from unstable
nuclei. We also present the calculation of the complete set of
spin observables, namely the unpolarized cross section, the
analyzing power, and the spin rotation function.

The outline of the paper is given as follows. In Sec. II A,
the relativistic impulse approximation formalisms employed
in this research are presented. This section also contains the
descriptions of how the scattering observables are calculated
in both position space (using localized optical potentials)
and momentum space (using nonlocal optical potentials).
Comparisons of the optical potentials calculated using both
IA1 and IA2 formalisms are also presented. Section III con-
tains results of the elastic scattering observables, namely the
differential cross section, analyzing power, and spin rotation
parameters. These scattering observables are first calculated by
solving the coordinate-space Dirac equation with the localized
IA1 and IA2 optical potentials. In this same section, the
scattering observables calculated using the different RMF
models are compared. The scattering observables obtained
using the factorized optical potentials are also compared with
the results obtained using the full-folding optical potentials.
Finally, the scattering observables calculated using localized
optical potentials are compared with the momentum space
calculations employing nonlocal optical potentials.

II. FORMALISM

A. Relativistic impulse approximations

In this section, the generalized relativistic impulse approx-
imation (called IA2) for elastic proton scattering, introduced
by Tjon and Wallace [14], is presented. In this formalism, the
relativistic optical potential is constructed by making use of
the symmetric Lorentz-invariant nucleon-nucleon amplitudes
of Ref. [15]. Following Ref. [14], the first-order relativistic
optical potential is given in momentum space by

Û (k′, k) = −4πiklab

m

∑
a

∫
d3P

(2π )3
ψa

×
(

P + 1

2
q
)
F̂ψa

(
P − 1

2
q
)

, (1)

where all occupied (proton or neutron single-particle) states are
included over a and q = k − k′ is the momentum transfer, F̂
is the invariant NN amplitude, and ψa denotes the bound-state
wave function obtained from relativistic mean field theory.
Medium effects are incorporated using the prescription of
Ref. [16].

Applying optimal factorization (i.e., evaluating the NN
amplitude at P = 0 as it is often assumed that the NN
amplitude generally varies slowly compared to the nuclear
wave function), the optical potential becomes (the so-called
tρ form):

Û (k′, k) = − 1
4 Tr2

[M̂pp

(
k, 1

2q; k′, 1
2q

)
ρ̂p(q)

]
− 1

4 Tr2
[M̂pn

(
k, 1

2q; k′, 1
2q

)
ρ̂n(q)

]
, (2)

where the nuclear density form factor is written as

ρ̂(q) = ρS (q ) + γ 0
2 ρV (q ) − α2 · q

2m
ρT (q ) (3)
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TABLE I. Root-mean-square charge radius and proton and neu-
tron root-mean-square radii of some closed-shell calcium isotopes.

Nucleus Observable NL3 FSUGold Experiment

48Ca rp 3.3789 3.3659
rn 3.6046 3.5632

�r = rn − rp 0.22572 0.1973
rch 3.4723 3.4597 3.4771 [20]

54Ca rp 3.5037 3.4834
rn 3.9008 3.8249

�r = rn − rp 0.39704 0.3414
rch 3.5939 3.5741 3.5640 [21]

58Ca rp 3.5317 3.5191
rn 4.0668 3.9950

�r = rn − rp 0.53514 0.47589
rch 3.6212 3.6089

60Ca rp 3.5513 3.5407
rn 4.1591 4.0841

�r = rn − rp 0.60779 0.54339
rch 3.6403 3.6300

132Sn rp 4.6435 4.6542
rn 4.9891 4.9251

�r = rn − rp 0.34558 0.27090
rch 4.7119 4.7225 4.7093 [20]

206Hg rp 5.3127 5.3109
rn 5.7739 5.6797

�r = rn − rp 0.46115 0.36882
rch 5.3633 5.3615 5.4837 [20]

and the scalar, vector, and tensor form factors are given,
respectively, by [14]

ρS (q ) = 4π

∫ ∞

0
dr r2ρS (r )j0,

ρV (q ) = 4π

∫ ∞

0
dr r2ρV (r )j0, (4)

ρT (q ) = 4πm

∫ ∞

0
dr r2ρT (r )

j1

q
,

where j0 and j1 are spherical Bessel functions. The scalar
density ρS (r ), vector density ρV (r ), and tensor density are
given as

ρS (r ) =
occ∑
α

(
2jα + 1

4πr2

)[
g2

α (r ) − f 2
α (r )

]
, (5)

ρV (r ) =
occ∑
α

(
2jα + 1

4πr2

)[
g2

α (r ) + f 2
α (r )

]
, (6)

ρT (r ) =
occ∑
α

(
2jα + 1

4πr2

)
[4gα (r )fα (r )]. (7)

Here, fα and gα are the bound-state wave functions calculated
using relativistic mean field theory. We have employed both
NL3 and FSUGold parametrizations [17–19]. The root-mean
square radii computed using NL3 and FSUGold parameter
sets, are shown and compared with experimental data, where
available, in Table I. There is satisfactory agreement with
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FIG. 1. Proton and neutron vector density plots for 48,58Ca, 132Sn,
and 206Hg nuclei calculated using the NL3 parametrization. Proton
vector density plots are shown in dashed lines while neutron vector
density plots are shown in dot-dashed lines.

experiment at the 1% level. The experimental data for 40,48Ca,
206Hg, and 132Sn are taken from Ref. [20] while the theoretical
result for 54Ca is taken from Ref. [21].

Figure 1 shows plots of the proton and neutron vector
densities for 48,58Ca, 132Sn, and 206Hg nuclei calculated using
the NL3 parametrization. Proton vector density plots are shown
in dashed lines while neutron vector density plots are shown
in dot-dashed lines. One can observe that 132Sn and 206Hg are
very neutron rich.

In the IA2 formalism, the full NN amplitude is expanded
in terms of covariant projection operators �ρi

to separate
positive- and negative-energy sectors of the Dirac space and
it can be written in terms of the kinematic covariants Kn

(n = 1 . . . 13) as

F̂ =
∑

ρ ′
1ρ

′
2ρ1ρ2

13∑
n=1

F
ρ ′

1ρ
′
2ρ1ρ2

n [�ρ ′
1
(k′

1) ⊗ �ρ ′
2
(k′

2)] Kn

× [�ρ1 (k1) ⊗ �ρ2 (k2)], (8)

where ρ(ρ ′) = + for positive-energy initial (final) state or
− for negative-energy initial (final) state, ρ1 is for projectile
particle, and ρ2 is for target struck nucleon. The kinematic
covariants Kn are given in Table II of Ref. [14]. It should
be noted that F̂ 11

IA2 �= F̂IA1 due to the presence of projection
operators in the IA2 F̂ . The covariant energy projection
operators �±(k) allow the separation of the positive- and
negative-energy sectors of the Dirac space, and Qij,μ denote
the four-momenta, where i = 1 (for nucleon 1, which is the
projectile), i = 2 (for nucleon 2, which is the target struck
nucleon). See Refs. [14–16,22] for details.

Local forms of the optical potentials have been found to be
accurate at high energy for nucleon-nucleus elastic scattering
due to the diffractive nature of the scattering. In the Dirac
optical potential derived above, nonlocalities are present due
to projection operators and covariants, as they depend on k
and k′. These are localized by assuming that the momentum
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FIG. 2. IA2 scalar and vector optical potentials.

operator k stays near the asymptotic value k̂, i.e., k ≈ k̂. This
enables E(k) and E(k′) to be replaced by E = E(k̂). Also,

k
m

≈ k̂
m

,
ka · q

m
= k2 − k

′2

2m
≈ 0. (9)

The localized coordinate space Dirac equation to be solved
is given by

[Eγ 0 + iγ · ∇ − m − Ũ (r)]�̃(r) = 0, (10)

in which case the optical potential Ũ (r) is given by [14]

Ũ (r) = S̃(r ) + γ 0Ṽ (r ) − iα · r̂ T̃ (r )

− [S̃LS (r ) + γ 0ṼLS (r )][α · (−ir × ∇)], (11)

where the scalar S̃(r ), vector Ṽ (r ), tensor T̃ (r ), scalar spin-
orbit S̃LS (r ), and vector spin-orbit ṼLS (r ) potentials are as
given in Eqs. (3.4.47) to (3.4.51) of Ref. [23].

Figure 2 shows plots of the IA2 scalar and vector optical
potentials calculated for proton scattering on 132Sn at Tlab =
200, 300, 500 MeV using optimally factorized potentials and
full-folding potentials. Figure 3 shows plots of the scalar
and vector optical potentials for proton scattering on 48Ca
calculated with NL3 parametrization using IA1, IA2, and Dirac
phenomenology, at Tlab = 500 and 200 MeV.

B. Momentum space calculations

Here, we present the solution of the momentum space
Dirac equation using nonlocal optical potentials. This enables
us to check the validity of using localized optical potentials
to calculate elastic scattering observables at intermediate
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FIG. 3. 48Ca Scalar and vector optical potentials calculated with
NL3 parametrization for IA1, IA2, and Dirac phenomenology at
Tlab = 500 and 200 MeV.

energies. We only give a brief description of the procedure.
Detailed presentation can be found in Refs. [24] and [23].
The momentum-space Dirac equation is transformed to two
coupled Lippmann-Schwinger-like equations in momentum
space. The momentum-space integral equation approach to
solving scattering problem deals directly with the scattering
amplitudes, whose values can be measured experimentally
[25]. This method also incorporates the required boundary
conditions in scattering problems. The two integral equations
are numerically solved to calculate the elastic scattering ob-
servables. The results obtained are then compared with those
calculated using localized optical potentials.

The stationary-state Dirac equation for the scattering of a
particle of mass m from an external central field U can be
written as

(/p − m) |�〉 = U |�〉,

[Eγ 0 − k′ · γ − m]�(k′) =
∫

d3k

(2π )3
Û (k′, k)�(k) = 0,

(12)

where E is the on-shell energy calculated in the proton-nucleus
center-of-mass frame, m is mass of the projectile, and Û (k′, k)
is the optical potential. In the static approximation, only three-
momentum can be transferred; energy is fixed. If we denote
helicity amplitude by 〈λ′|φ|λ〉, with incident helicity λ and
final helicity λ′, then for elastic proton scattering from a spin-0
nucleus, the two required helicity amplitudes are expanded as
follows [24,26]:

φ1(θ ) ≡ 〈+|φ|+〉 ≡ φ1/2,1/2(k, k′)

=
∑

j

2j + 1

2k̂
φ

j
1 d

j
1/2,1/2(θ ), (13)

φ2(θ ) ≡ 〈+|φ|−〉 ≡ φ1/2,−1/2(k, k′)

=
∑

j

2j + 1

2k̂
φ

j
2 d

j
−1/2,1/2(θ ). (14)
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FIG. 4. 40Ca scattering observables calculated with the NL3 and
FSUGold parametrizations using IA2 formalism at Tlab = 200 MeV.
The solid lines show the results using NL3 parametrization, the dashed
lines show the results using FSUGold parametrization, while the
experimental data are shown in circles.

The three scattering observables to be calculated are dif-
ferential cross section (σ ), analyzing power (Ay), and spin-
rotation function (Q). For elastic proton-nucleus scattering,
these observables are obtained from the helicity amplitudes
using the following relations:

σ = |φ1|2 + |φ2|2, (15)

Ay = 2 Im(φ1φ
∗
2 )

|φ1|2 + |φ2|2 , (16)

Q = cos(θ )Re(φ1φ
∗
2 ) + 1

2 sin(θ )[|φ1|2 − |φ2|2]

|φ1|2 + |φ2|2 . (17)

III. RESULTS

A. Comparison of the RMF densities

We show here plots of the scattering observables calculated
using both NL3 and FSUGold parametrizations.

Here we study the effect of the different forms of the
Lagrangian densities on the proton-nucleus scattering observ-
ables. Calculations for elastic proton scattering from the stable
40,48Ca nuclei are included in order to compare our results with
existing experimental data; this will also check the validity and
reliability of our calculations.

Figures 4 to 11 show the scattering observables for elastic
proton scattering from 40–60Ca nucleus (at Tlab = 200 and
500 MeV) as functions of the center-of-mass scattering angle
θ calculated using the NL3 and FSUGold parameter sets
with the IA2 relativistic optical potentials. The top left panel
shows the scattering cross section results, the top right panel
shows analyzing power, and the bottom plots show results for
the spin rotation parameters. The results obtained with the
NL3 parameter set are shown in solid lines, while the results
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FIG. 5. Same as in Fig. 4 except at Tlab = 500 MeV.

obtained using the FSUGold parameter set are shown in dashed
lines.

One can observe from Fig. 4 that the two RMF models
(NL3 and FSUGold) give very good descriptions of the scat-
tering observables for p + 40Ca at Tlab = 200 MeV. However,
the FSUGold parameter set gives better descriptions of the
analyzing power and spin rotation parameter at large scatter-
ing angles. The same conclusions can be drawn at incident
projectile energy of 500 MeV shown in Fig. 5.

The two RMF models give very good descriptions of the
scattering observables for p + 48Ca at Tlab = 200 MeV as
shown in Fig. 6. Unlike the case of 40Ca where the FSUGold
parameter set gave better descriptions of the spin observables,
the two RMF models give comparable descriptions of the spin
observables for 48Ca. The case for incident projectile energy
of 500 MeV is shown in Fig. 7, where the difference between
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FIG. 6. Same as in Fig. 4 except for 48Ca at Tlab = 200 MeV.
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FIG. 7. Same as in Fig. 4 except for 48Ca at Tlab = 500 MeV.

the two RMF models can be observed at large scattering angles
θ � 35◦.

For p + 58Ca at Tlab = 200 and 500 MeV shown in Figs. 8
and 9, it can be observed that the two models also give similar
descriptions of the scattering observables. There is a slight
difference, however, observed at large scattering angles for
incident projectile energy of 500 MeV.

Figures 10 and 11 show the scattering observables cal-
culated for p + 60Ca at incident proton energies of 200 and
500 MeV, respectively. There is no available experimental
data now, but we compare with the theoretical calculations
presented in Ref. [16] by Kaki. There is a very good agreement
between our results and those of Kaki, as the two results give
identical values of scattering cross section at the first minimum.
It should be noted that the IA2 formalism was also employed
by Kaki, but with the use of different Lagrangian densities.
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FIG. 8. Same as in Fig. 4 except for 58Ca at Tlab = 200 MeV.
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FIG. 9. Same as in Fig. 4 except for 58Ca at Tlab = 500 MeV.

We also show in Figs. 12 and 13 the scattering observables
for p + 120Sn and p + 132Sn, respectively at Tlab = 200 MeV
calculated using both NL3 and FSUGold parameter sets.
The two models give similar descriptions of the scattering
observables. It can be observed from Fig. 12 that both NL3 and
FSUGold models give very good descriptions of the differential
cross section and analyzing power data for proton scattering
from 120Sn. Data are taken from Ref. [27].

B. IA1 and IA2

In this subsection, the results of the scattering cross sec-
tion and spin observables obtained using the IA1 and IA2
formalisms are presented and compared. The calculations have
been carried out using the NL3 parameter set.
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FIG. 10. Same as in Fig. 4 except for 60Ca at Tlab = 200 MeV.
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FIG. 11. Same as in Fig. 4 except for 60Ca at Tlab = 500 MeV.

Figure 14 shows the plots of the scattering cross section,
analyzing power, and spin rotation parameter against center-
of-mass scattering angle θ for elastic proton scattering from
40Ca at Tlab = 200 MeV using the NL3 parameter set. The
figure shows comparison of the IA1 and IA2 formalisms with
experimental data. The top left panel shows the plots for the
scattering cross section, the top right panel shows analyzing
power, and the bottom panel shows spin rotation function.
The same scattering observables are shown in Fig. 15 for 40Ca
at Tlab = 500 MeV. One can observe that at Tlab = 500 MeV
there is competition between the two formalisms in describing
the experimental data for the three scattering observables.
The difference between the three formalisms is noticed at
large scattering angles. At Tlab = 200 MeV, the IA2 formalism
gives a very good description of the scattering observables

0 10 20 30 40 50
 (deg)

10-2

100

102

104

106

 
 (

m
b

/s
r)

 

 IA2 p+120Sn, 200 MeV 

NL3
FSU

0 10 20 30 40 50
 (deg)

-1

-0.5

0

0.5

1

 A
y
 

0 10 20 30 40 50
 (deg)

-1

-0.5

0

0.5

1

 Q
 

FIG. 12. Same as in Fig. 4 except for 120Sn at Tlab = 200 MeV.
Data taken from Ref. [27].
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FIG. 13. Same as in Fig. 4 except for 132Sn at Tlab = 200 MeV.

especially scattering cross section and spin rotation parameter.
The IA1 formalism overestimates the scattering cross section
and failed to give correct descriptions of the minima and
maxima in the case of the analyzing power and spin rotation
parameter. This follows from the overly large scalar and vector
optical potentials given by the IA1 formalism at this incident
projectile laboratory energy. One should note that the IA2
formalism also did not properly describe the analyzing power
at low scattering angle θ � 13◦ but give proper description
at θ � 13◦. Figure 16 shows the plots of the scattering cross
section, analyzing power, and spin rotation parameter against
center-of-mass scattering angle θ for elastic proton scattering
from 40Ca at Tlab = 800 MeV using the NL3 parameter set.
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FIG. 14. 40Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 200 MeV.
The IA2 results are shown in solid lines, while the IA1 results are
shown in dashed lines.
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FIG. 15. 40Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 500 MeV.
The expressions of lines are the same as in Fig. 14.

In Figs. 17, 18, and 19 the plots of the elastic scattering
observables are plotted against center-of-mass scattering angle
for p + 48Ca at Tlab = 200, 500, and 800 MeV, respectively.
It can be observed that at Tlab = 200 MeV, the IA2 formalism
gives very good descriptions of the three scattering observ-
ables. The IA1 formalism, apart from giving the correct first
minimum, overestimates the scattering cross-section data and
did not accurately predict the minima and maxima in analyzing
power and spin rotation parameter data. The two formalisms
give similar descriptions of the scattering observables at Tlab =
500 MeV, but at large scattering angles, one begins to notice
the difference between them.
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FIG. 16. 40Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 800 MeV.
The expressions of lines are the same as in Fig. 14.
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FIG. 17. 48Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 200 MeV.
The expressions of lines are the same as in Fig. 14.

Figures 20 and 21 show the plots of the elastic proton
scattering observables against center-of-mass scattering angle
for the unstable 58Ca target at Tlab = 200 MeV and 500 MeV,
respectively. As expected, the IA1 calculation gives larger
values after the first dip, compared with the IA2 calculations.
Unlike the case of stable nuclei, there is no good agree-
ment between the IA1 and IA2 descriptions of the scattering
observables at Tlab = 500 MeV. Apart from the minimum at
θ � 10◦, the IA1 gives deeper minima of analyzing power and
spin rotation and larger scattering cross section compared to
the IA2 formalism.
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FIG. 18. 48Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 500 MeV.
The expressions of lines are the same as in Fig. 14.
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FIG. 19. 48Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 800 MeV.
The expressions of lines are the same as in Fig. 14.

C. Effect of full folding versus optimally factorized optical
potential on scattering observables

The results of the scattering observables calculated using
optimally factorized optical potentials and full folding optical
potentials will be presented and compared here; this will
show the effect of medium contributions on the scattering
observables. Figures 22–27 show the scattering cross sections,
analyzing powers, and spin rotation functions for elastic proton
scattering from 48,54,58Ca targets at Tlab = 200 and 500 MeV.
The calculations obtained using optimally factorized optical
potentials (denoted as “factorized” and shown in solid lines)
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FIG. 20. 58Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 200 MeV.
The expressions of lines are the same as in Fig. 14.
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FIG. 21. 58Ca scattering observables calculated with the NL3
parametrization using IA1 and IA2 formalisms at Tlab = 500 MeV.
The expressions of lines are the same as in Fig. 14.

are compared with the calculations that incorporate medium
effects (denoted as “full-fold” and shown in dashed lines). In
Figs. 22 and 24, the scattering observables are shown against
scattering angles for 40,48Ca nuclei at Tlab = 200 MeV. There
is not much effect of including medium modifications on the
cross sections at this incident energy. There is a conspicuous
effect, however, on the analyzing power; the analyzing power
data at the first maximum are better reproduced. The use
of optimally factorized optical potential could not correctly
reproduce the first maximum of the analyzing power data, as
it underestimates it. Medium effects are also seen on the spin
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FIG. 22. 40Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2
optical potentials at Tlab = 200 MeV. The results obtained using
factorized optical potentials are shown in solid lines while dashed
lines indicate results calculated by including medium effects.
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FIG. 23. 40Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 op-
tical potentials at Tlab = 500 MeV. The expressions of lines are the
same as in Fig. 22.

rotation function at large scattering angles and first minimum.
Figures 26 show the case for 58Ca at Tlab = 200 MeV. One can
observe that there is no contribution of medium effect to the
scattering cross sections for this target. The contributions are
seen in the analyzing power and spin rotation function. Medium
modifications increase the value of the first analyzing power
maximum and increase the depth of the third minimum. For
the spin rotation function, medium effects increase the value
of the first minimum and maximum and reduce the depth of
the third minimum.
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FIG. 24. 48Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 op-
tical potentials at Tlab = 200 MeV. The expressions of lines are the
same as in Fig. 22.
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FIG. 25. 48Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 op-
tical potentials at Tlab = 500 MeV. The expressions of lines are the
same as in Fig. 22.

In Fig. 28, the scattering observables for elastic proton
scattering from 120Sn at Tlab = 200 MeV calculated using both
optimally factorized and full folding optical potentials are
shown. In this case, there is no obvious difference for the
differential cross section and analyzing power data. A small
difference can, however, be seen at small scattering angles for
spin rotation parameter Q.

In all the three 40,48,58Ca targets, there are no noticeable
contributions of medium effects on the scattering observ-
ables at Tlab = 500 MeV. This is observed from Figs. 23, 25,
and 27. In summary, medium effects have contributions at
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FIG. 26. 58Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 op-
tical potentials at Tlab = 200 MeV. The expressions of lines are the
same as in Fig. 22.
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FIG. 27. 58Ca scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 opti-
cal potentials at Tlab = 500 MeV. The expressions of lines is the same
as in Fig. 22.

Tlab = 200 MeV and not at Tlab = 500 MeV for the calcium
isotopes considered here. In the case of p + 120Sn (a heavier
nucleus), there is not much difference in the scattering observ-
ables even at Tlab = 200 MeV.

D. Results of scattering observables calculated using local
and nonlocal optical potentials

Results of the differential scattering cross section, analyzing
power and spin rotation function, calculated using the nonlocal
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FIG. 28. 120Sn scattering observables calculated with the NL3
parametrization using optimally factorized and full-folding IA2 opti-
cal potentials at Tlab = 200 MeV. The expressions of lines is the same
as in Fig. 22.
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FIG. 29. Scattering observables calculated in position space and
momentum space for p + 40Ca at Tlab = 200 MeV using FSUGold
parametrization. Solid lines indicate momentum space calculations
using nonlocal potentials while dashed lines indicate position space
calculations using localized potentials. Experimental data are shown
in circles.

optical potentials in the coupled Lippmann-Schwinger-like
equations are presented in this section.

Figures 29–36 show results of the proton elastic scattering
observables calculated in position space (using localized IA2
optical potentials) and in momentum space (using nonlocal IA2
optical potentials) for 40,48,58,60Ca targets at incident projectile
energies of 200 and 500 MeV. The FSUGold parametrization
was used in the calculations of the relativistic densities.
Solid lines indicate position space calculations using localized
optical potentials while dashed lines indicate momentum space
calculations using nonlocal optical potentials. Experimental
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FIG. 30. Same as in Fig. 29 except for Tlab = 500 MeV.
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FIG. 31. Same as in Fig. 29 except for p + 48Ca at Tlab =
200 MeV.

data are shown in black circles. The top left plots in each figure
show the scattering cross section results, the top right show the
analyzing power results, while the bottom plots show the spin
rotation parameters.

One observes from Figs. 29 and 31 that for 40,48Ca targets,
both local and nonlocal optical potentials give very good
descriptions of the differential cross-section data; however,
there are competitive descriptions of the spin observables.
The use of nonlocal optical potentials give better descriptions
of the analyzing powers at first maxima and minima but the
local potentials give better descriptions afterward. At incident
projectile energy of 500 MeV shown in Figs. 29 and 31, both
approaches give similar descriptions of the scattering observ-
ables data. The obvious difference between both formalisms
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FIG. 32. Same as in Fig. 29 except for p + 48Ca at Tlab =
500 MeV.
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FIG. 33. Same as in Fig. 29 except for p + 58Ca at Tlab =
200 MeV.

in describing the scattering observables is noticed at large
scattering angles where there is no available experimental
data. The same conclusions can be drawn for p + 58,60Ca at
incident projectile energies of 200 and 500 MeV shown in
Figs. 33, 34, 35, and 36. There are similar descriptions of
the three scattering observables at incident projectile energy
of 200 MeV. There is an obvious difference between the two
methods in describing the spin observables at large scattering
angles when the incident proton energy is 500 MeV.

IV. CONCLUSION

We have presented a microscopic study of proton elastic
scattering from unstable nuclei using a relativistic formalism.
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FIG. 34. Same as in Fig. 29 except for p + 58Ca at Tlab =
500 MeV.
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FIG. 35. Same as in Fig. 29 except for p + 60Ca at Tlab =
200 MeV.

The densities are calculated using bound-state wave functions
obtained from relativistic mean field theory, employing the
NL3 and FSUGold parameter sets. The different RMF param-
eter sets give different descriptions of the neutron densities at
and close to the interior of the unstable nuclei studied. Up to
one decimal place, the RMF models give similar values of the
charge densities for calcium isotopes considered here.

The microscopic relativistic optical potentials are calculated
using both the IA1 and IA2 formalisms. A comparison of the
IA1, IA2, and Dirac phenomenology optical potentials shows
that the IA2 formalism gives the lowest scalar and vector
potential strengths at incident projectile energies of 200 and
500 MeV. At 200 MeV, the IA1 formalism gives potential
strengths stronger than Dirac phenomenology for both stable
and unstable nuclei. The overly strong scalar and vector optical
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FIG. 36. Same as in Fig. 29 except for p + 60Ca at Tlab =
500 MeV.

potentials produced by the IA1 formalism at this low energy
(200 MeV) has been attributed to the implicit incorporation of
pseudoscalar pion coupling. The optical potentials calculated
using optimal factorization are also compared with those
obtained with full-folding optical potentials. The effect of
using full-folding optical potentials is found at an incident
projectile energy of 200 MeV, while there is no noticeable
difference at 500 MeV and above.

The calculated optical potentials are used as inputs in
the Dirac equation. The nonlocal optical potentials are used
in the momentum-space Dirac equation while the localized
optical potentials are substituted into the coordinate-space
Dirac equation. We have decided to use the two approaches
to investigate the effect of using nonlocal optical potentials
on the elastic scattering observables for unstable nuclei. After
solving the position-space Dirac equation, elastic scattering
observables were calculated for 40,48,58,60Ca targets. In order
to check the sensitivity of elastic scattering observables to
different RMF densities, we showed plots of the scattering
observables with two RMF densities. Except at large scattering
angles, the two model densities give similar descriptions of
the elastic scattering observables for both stable and unstable
nuclei considered in this work.

The results of elastic scattering observables computed using
IA1 and IA2 formalisms are compared. At incident projectile
energy of 500 MeV, both formalisms give similar descriptions
of the elastic scattering observables for both stable and unstable
nuclei at low scattering angles, but at large scattering angles,
the difference between both formalisms becomes obvious. At
incident projectile energy of 200 MeV, however, the IA2 for-
malism gives a better description of the scattering observables
for both stable and unstable nuclei. The inability of IA1 formal-
ism to give proper descriptions of the scattering observables
at incident projectile energies �200 MeV is due to the large
scalar and vector optical potentials it gives at low energies.

We also discussed effect of full-folding optical potentials
on the scattering observables compared with the calculations
using optimally factorized optical potentials. We found that the
use of full-folding optical potentials improve the spin observ-
ables (analyzing power and spin rotation function) at incident
projectile energy of 200 MeV for the calcium isotopes, while
there is no discernible difference at 500 MeV. However, for
120Sn, there is not much difference in the scattering observables
calculated using optimally factorized and full-folding optical
potentials.

Finally, we studied elastic scattering observables calculated
using nonlocal optical potentials. To achieve this, we sub-
stituted the nonlocal optical potential into momentum-space
Dirac equation, which is then transformed to two coupled
integral equations. The transformation is necessary because the
scattering observables are connected to the T matrix. The treat-
ment of solutions at high-angular-momentum states is done
using high-order global adaptive quadratures to solve the os-
cillatory integrals encountered at high angular momenta. This
approach is sufficient for the nuclei studied in this work and at
incident projectile energies up to �500 MeV. Matrix inversion
technique was used to solve the coupled integral equations,
from which the elastic scattering observables are computed. We
observed that results of momentum-space calculations using
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nonlocal optical potentials give better descriptions of the spin
observables at incident projectile energy of 200 MeV. There is
a competitive description of the scattering observables data
at incident projectile energy of 500 MeV between the two
approaches.
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