23 research outputs found

    PFR²: a curated database of planktonic Foraminifera18S ribosomal DNA as a resource for studies of plankton ecology, biogeography, and evolution

    Get PDF
    International audiencePlanktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples. Thousands of 18S rDNA partial sequences have been generated, representing all major known morphological taxa across their worldwide oceanic range. This comprehensive data coverage provides an opportunity to assess patterns of molecular ecology and evolution in a holistic way for an entire group of planktonic protists. We combined all available published and unpublished genetic data to build PFR2, the Planktonic foraminifera Ribosomal Reference database. The first version of the database includes 3322 reference 18S rDNA sequences belonging to 32 of the 47 known morphospecies of extant planktonic foraminifera, collected from 460 oceanic stations. All sequences have been rigorously taxonomically curated using a six-rank annotation system fully resolved to the morphological species level and linked to a series of metadata. The PFR2 website, available at http://pfr2.sb-roscoff.fr, allows downloading the entire database or specific sections, as well as the identification of new planktonic foraminiferal sequences. Its novel, fully documented curation process integrates advances in morphological and molecular taxonomy. It allows for an increase in its taxonomic resolution and assures that integrity is maintained by including a complete contingency tracking of annotations and assuring that the annotations remain internally consistent

    Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents

    Get PDF
    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates

    Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    Get PDF
    © 2016 Fenton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article

    Biogeography and genetic diversity of the atlantid heteropods.

    Get PDF
    The atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying on a small (<14 mm), delicate aragonite shell and living in the upper ocean means that, in common with pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and widespread distributions indicate that the family is more diverse than the 23 currently known species. Uncovering this diversity is fundamental to determining the distribution of atlantids and to understanding their environmental tolerances. Here we present phylogenetic analyses of all described species of the family Atlantidae using 437 new and 52 previously published cytochrome c oxidase subunit 1 mitochondrial DNA (mtCO1) sequences. Specimens and published sequences were gathered from 32 Atlantic Ocean stations, 14 Indian Ocean stations and 21 Pacific Ocean stations between 35°N and 43°S. DNA barcoding and Automatic Barcode Gap Discovery (ABGD) proved to be valuable tools for the identification of described atlantid species, and also revealed ten additional distinct clades, suggesting that the diversity within this family has been underestimated. Only two of these clades displayed obvious morphological characteristics, demonstrating that much of the newly discovered diversity is hidden from morphology-based identification techniques. Investigation of six large atlantid collections demonstrated that 61% of previously described (morpho) species have a circumglobal distribution. Of the remaining 39%, two species were restricted to the Atlantic Ocean, five occurred in the Indian and Pacific oceans, one species was only found in the northeast Pacific Ocean, and one occurred only in the Southern Subtropical Convergence Zone. Molecular analysis showed that seven of the species with wide distributions were comprised of two or more clades that occupied distinct oceanographic regions. These distributions may suggest narrower environmental tolerances than the described morphospecies. Results provide an updated biogeography and mtCO1 reference dataset of the Atlantidae that may be used to identify atlantid species and provide a first step in understanding their evolutionary history and accurate distribution, encouraging the inclusion of this family in future plankton research
    corecore