206 research outputs found

    Gata2 related conditions and predisposition to pediatric myelodysplastic syndromes

    Get PDF
    Myelodysplastic syndromes (MDS) are hematopoietic disorders rare in childhood, often occurring in patients with inherited bone marrow failure syndromes or germinal predisposition syndromes. Among the latter, one of the most frequent involves the gene GATA binding protein 2 (GATA2), coding for a transcriptional regulator of hematopoiesis. The genetic lesion as well as the clinical phenotype are extremely variable; many patients present hematological malignancies, especially MDS with the possibility to evolve into acute myeloid leukemia. Variable immune dysfunction, especially resulting in B-and NK-cell lymphopenia, lead to severe infections, including generalized warts and mycobacterial infection. Defects of alveolar macrophages lead to pulmonary alveolar proteinosis through inadequate clearance of surfactant proteins. Currently, there are no clear guidelines for the monitoring and treatment of patients with GATA2 mutations. In patients with MDS, the only curative treatment is allogeneic hematopoietic stem cell transplantation (HSCT) that restores normal hematopoiesis preventing the progression to acute myeloid leukemia and clears long-standing infections. However, to date, the donor type, conditioning regimen, and the optimal time to proceed to HSCT, as well as the level of chimerism needed to reverse the phenotype, remain unclear highlighting the need for consensus guidelines

    Safety and effectiveness of gemcitabine for the treatment of classic Kaposi’s sarcoma without visceral involvement

    Get PDF
    Background: Classic Kaposi’s sarcoma (CKS) is a rare, multifocal, endothelial cell neoplasm that typically occurs in elderly people with previous infection by human herpes virus-8. Prospective trials are rare, and the choice of drugs relies on prospective trials performed on HIV-associated Kaposi’s sarcoma (KS). Pegylated liposomal anthracyclines and taxanes are considered the standard first- and second-line chemotherapy, respectively. Despite the indolent biologic behavior, the natural history is characterized by recurrent disease. This condition of chronic administration of cytotoxic drugs is often associated with immediate/long-term adverse events. Methods: This was an observational, retrospective study to evaluate the effectiveness and safety of gemcitabine in patients with CKS. From January 2016 to September 2021, the patients were treated with gemcitabine 1000 mg/m2 on days 1 and 8, with cycles repeated every 21 days. The treatment was administered as first or second line. Results: Twenty-seven (27) patients were included in the study. Twenty-one (21) out 27 patients (77.8%) achieved a partial response (PR), including 8 patients with major response (MR) (29.6%) and 13 patients with minor response (mR) (48.2%); 2 (7.4%) showed a complete response (CR), 3 (11.1%) a stable disease (SD), and 1 (3.7%) a progressive disease (PD). Tumor responses were generally rapid, with a median time to first response of 4 weeks (range, 3–12 weeks). Patients who responded had disease improvement with flattening of the skin lesions, decrease in the number of lesions, and substantial reduction in tumor-associated complications. Median duration of response was 19.2 months. Common adverse events were grades 1/2 thrombocytopenia, and grade 1 noninfectious fever. No patient discontinued treatment as a result of adverse events. Conclusion: Our study showed that gemcitabine is effective and well tolerated, acts rapidly on cutaneous lesions, and allows substantial symptom palliation, without dose-limiting toxicity. Gemcitabine represents a safe and effective option for the treatment of CKS

    Outcome of children with acute leukemia given HLA-haploidentical HSCT after ab T-cell and B-cell depletion

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of ab T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti–T-lymphocyte globulin from day 25 to 23 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapse-free survival (GRFS) is 71%. Total body irradiation–containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after ab T- and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120

    Betibeglogene Autotemcel Gene Therapy for Non-β⁰/β⁰ Genotype β-Thalassemia

    Get PDF
    BACKGROUND: Betibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent β-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the β-globin (βA-T87Q) gene. METHODS: In this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent β-thalassemia and a non-β0/β0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months). RESULTS: A total of 23 patients were enrolled and received treatment, with a median follow-up of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbAT87Q) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed. CONCLUSIONS: Treatment with beti-cel resulted in a sustained HbAT87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-β0/β0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.)

    Busulfan-fludarabine- or treosulfan-fludarabine-based myeloablative conditioning for children with thalassemia major

    Get PDF
    Significant advances in supportive care for patients with transfusion-dependent thalassemia major (TDT) have improved patients' life expectancy. However, transfusion-associated iron overload remains a significant barrier to long-term survival with good quality of life. Today, allogeneic hematopoietic stem cell transplantation (HSCT) is the current curative standard of care. Alongside selection of the best available donor, an optimized conditioning regimen is crucial to maximize outcomes for patients with TDT undergoing HSCT. The aim of this retrospective analysis was to investigate the role of busulfan-fludarabine-based and treosulfan-fludarabine-based conditioning in TDT patients undergoing HSCT. We included 772 patients registered in the European Society for Blood and Marrow Transplantation (EBMT) database who underwent first HSCT between 2010 and 2018. Four hundred ten patients received busulfan-fludarabine-based conditioning (median age 8.6 years) and 362 patients received treosulfan-fludarabine-based conditioning (median age 5.7 years). Patient outcomes were retrospectively compared by conditioning regimen. Two-year overall survival was 92.7% (95% confidence interval: 89.3-95.1%) after busulfan-fludarabine-based conditioning and 94.7% (95% confidence interval: 91.7-96.6%) after treosulfan-fludarabine-based conditioning. There was a very low incidence of second HSCT overall. The main causes of death were infections, graft-versus-host disease, and rejection. In conclusion, use of busulfan or treosulfan as the backbone of myeloablative conditioning for patients with TDT undergoing HSCT resulted in comparably high cure rates. Long-term follow-up studies are warranted to address the important issues of organ toxicities and gonadal function.Transplantation and immunomodulatio

    Limits on the production of scalar leptoquarks from Z (0) decays at LEP

    Get PDF
    A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)
    corecore